Alüminyum matrisli kompozitlerde takviye olarak tufal kullanımının incelenmesi

Endüstriyel atıklar, alüminyum matrisli kompozitlerin mekanik özelliklerini arttırmak için takviye partikülleri olarak yaygın şekilde kullanılmaktadır. Çeliğin şekillendirilmesi sırasında esas olarak demir oksitlerden oluşan tufaller açığa çıkmaktadır. Bu çalışmada tufalin alüminyum matrisli kompozitlerde takviye malzemesi olarak kullanımı araştırılmıştır. İlk olarak bir çelikhaneden elde edilen tufal, yüksek enerjili bilyeli öğütme ile öğütülmüş ve öğütme parametreleri incelenmiştir. En iyi parçacık boyutu dağılımı (d(0.5)=1.553 μm), 800 RPM'de 20 saatlik öğütmeden elde edilmiştir. Öğütülmüş tufal, ticari olarak saf alüminyum ile ağırlıkça %0-10 oranında gezegen tipi bir bilyalı değirmende 300 RPM'de 60-300 dakika harmanlanmıştır, ardından preslenenerek 600-650 °C'de 2 saat sinterlenmiştir. Öğütme süresinin artmasının numunelerin sertliğini arttırıp gözenekliliğini azalttığı, sıcaklığın artmasının da gözeneklilik değerlerini 615°C'ye kadar azalttığı görülmüştür. Öte yandan, artan takviye miktarı gözenekliliği, özellikle ağırlıkça %2.5'in üzerinde, hacimce ~%10'a kadar artırmaktadır. Ancak daha sert tane takviye miktarı nedeniyle tufal miktarının artması sertlik değerlerini artırmakta ve numunelerin aşınma oranlarını düşürmektedir.

The investigation of mill scale utilization as a reinforcement in aluminum matrix composites

Industrial waste is frequently utilized as reinforcing material in aluminum matrix composites (AMC) to improve their mechanical qualities. Mill Scale (MS), which is mainly composed of iron oxides, is obtained during the forming process of steel. In the present study, the utilization of MS as a reinforcement material in AMC was investigated. The MS obtained from a steel mill was initially pulverized by high-energy ball milling, and the milling parameters were studied. 20 hours of milling at 800 RPM provided the finest distribution of particle sizes with a d(0.5) value of 1.553 µm. The milled MS was blended with commercially pure aluminum with a ratio of 0-10 wt. % in a high-energy ball mill at 300 RPM for 60-300 min, then pressed and sintered for 2 h at 600-650 °C. It was observed that increasing milling time increases the hardness and lowers the porosity of the samples and increasing the temperature up to 615°C also decreases the porosity values. On the other hand, increasing reinforcement amount increases porosity up to ~10 vol. %, especially over 2.5 wt. %. However, increasing the MS amount results in higher hardness values and lower sample wear rates because of the harder particle reinforcement.

___

  • M.O. Bodunrin, K.K. Alaneme, and L.H. Chown, Aluminium matrix hybrid composites: a review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. Journal of Materials Research and Technology, 4(4), 434–45, 2015. https://doi.org/10.1016/j.jmrt.2015.05.003.
  • R. Bauri and D. Yadav, Introduction to Metal Matrix Composites, Metal Matrix Composites by Friction Stir Processing, Elsevier, 2018, pp. 1–16
  • A. Lakshmikanthan, S. Angadi, V. Malik, K.K. Saxena, C. Prakash, S. Dixit, and K.A. Mohammed, Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites. Materials, 15(17), 6111, 2022. https://doi.org/10.3390/ma15176111
  • B. Birol, B. Süngü Misirlioğlu, and Ö. ÇAKIR, Investigation of magnetite concentrate utilization as reinforcement in aluminum matrix composites. Journal of Composite Materials, 56(25), 3897–910, 2022. https://doi.org/10.1177/00219983221124753
  • C. Suryanarayana and N. Al-Aqeeli, Mechanically alloyed nanocomposites. Progress in Materials Science, 58(4), 383–502, 2013. https://doi.org/10.1016/ j.pmatsci.2012.10.001
  • N.K. Bhoi, H. Singh, and S. Pratap, Developments in the aluminum metal matrix composites reinforced by micro/nano particles – A review. Journal of Composite Materials, 54(6), 813–33, 2020. https://doi.org/ 10.1177/0021998319865307
  • A. Lakshmikanthan, S. Angadi, V. Malik, K.K. Saxena, C. Prakash, S. Dixit, and K.A. Mohammed, Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites. Materials, 15(17), 6111, 2022. https://doi.org/10.3390/ma15176111
  • L.A. Dobrzański, A. Włodarczyk, and M. Adamiak, The structure and properties of PM composite materials based on EN AW-2124 aluminum alloy reinforced with the BN or Al2O3 ceramic particles. Journal of Materials Processing Technology, 175(1–3), 186–91, 2006. https://doi.org/10.1016/j.jmatprotec.2005.04.031
  • M. Rahimian, N. Parvin, and N. Ehsani, Investigation of particle size and amount of alumina on microstructure and mechanical properties of Al matrix composite made by powder metallurgy. Materials Science and Engineering: A, 527(4–5), 1031–8, 2010. https://doi.org/10.1016/j.msea.2009.09.034
  • M.K. Gupta, P.K. Rakesh, and I. Singh, Application of Industrial Waste in Metal Matrix Composite. Journal of Polymer & Composites, 4(3), 27–34, 2016
  • I. Dinaharan and E.T. Akinlabi, Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing. Composites Communications, 9, 22–6, 2018. https://doi.org/10.1016/J.COCO.2018.04.007
  • I. Dinaharan, R. Nelson, S.J. Vijay, and E.T. Akinlabi, Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing. Materials Characterization, 118, 149–58, 2016. https://doi.org/10.1016/j.matchar.2016.05.017
  • I. Dinaharan and E.T. Akinlabi, Low cost metal matrix composites based on aluminum, magnesium and copper reinforced with fly ash prepared using friction stir processing. Composites Communications, 9, 22–6, 2018. https://doi.org/10.1016/J.COCO.2018.04.007
  • T.P.D. Rajan, R.M. Pillai, B.C. Pai, K.G. Satyanarayana, and P.K. Rohatgi, Fabrication and characterisation of Al-7Si-0.35Mg/fly ash metal matrix composites processed by different stir casting routes. Composites Science and Technology, 67(15–16), 3369–77, 2007. https://doi.org/10.1016/ J.COMPSCITECH.2007.03.028
  • V.K. Sharma, R.C. Singh, and R. Chaudhary, Effect of flyash particles with aluminium melt on the wear of aluminium metal matrix composites. Engineering Science and Technology, an International Journal, 20(4), 1318–23, 2017. https://doi.org/10.1016/ J.JESTCH.2017.08.004
  • N. Prasad, Dry Sliding Wear Behavior of Aluminium Matrix Composite Using Red Mud an Industrial Waste. International Research Journal of Pure and Applied Chemistry, 3(1), 59–74, 2013. https://doi.org/10.9734/ IRJPAC/2014/2906
  • C. Kar, B. Surekha, H. Jena, and S.D. Choudhury, Study of Influence of Process Parameters in Electric Discharge Machining of Aluminum – Red Mud Metal Matrix Composite. Procedia Manufacturing, 20, 392–9, 2018. https://doi.org/10.1016/ J.PROMFG.2018.02.057
  • Y.K. Singla, R. Chhibber, H. Bansal, and A. Kalra, Wear behavior of aluminum alloy 6061-based composites reinforced with SiC, Al2O3, and red mud: a comparative study. JOM, 67(9), 2160–9, 2015. https://doi.org/10.1007/s11837-015-1365-0
  • P. Samal, R.K. Mandava, and P.R. Vundavilli, Dry sliding wear behavior of Al 6082 metal matrix composites reinforced with red mud particles. SN Applied Sciences, 2(2), 313, 2020. https://doi.org/10.1007/s42452-020-2136-2
  • S. Rajesh, D. Devaraj, R. Sudhakara Pandian, and S. Rajakarunakaran, Multi-response optimization of machining parameters on red mud-based aluminum metal matrix composites in turning process. The International Journal of Advanced Manufacturing Technology 2012 67:1, 67(1), 811–21, 2012. https://doi.org/10.1007/S00170-012-4525-1
  • N. Panwar and A. Chauhan, Development of aluminum composites using Red mud as reinforcement- A review, in: 2014 Recent Advances in Engineering and Computational Sciences (RAECS), IEEE, 2014, pp. 1–4
  • J.A.K. Gladston, N.M. Sheriff, I. Dinaharan, and J.D. Raja Selvam, Production and characterization of rich husk ash particulate reinforced AA6061 aluminum alloy composites by compocasting. Transactions of Nonferrous Metals Society of China (English Edition), 25(3), 683–91, 2015. https://doi.org/10.1016/S1003-6326(15)63653-6
  • B.P. Kumar and A.K. Bırru, Microstructure and mechanical properties of aluminium metal matrix composites with addition of bamboo leaf ash by stir casting method. Transactions of Nonferrous Metals Society of China (English Edition), 27(12), 2555–72, 2017. https://doi.org/10.1016/S1003-6326(17)60284-X
  • K.S.S. Raja, V.K.B. Raja, K.R. Vignesh, and S.N.R. Rao, Effect of Steel Slag on the Impact Strength of Aluminium Metal Matrix Composite. Applied Mechanics and Materials, 766–767, 240–5, 2015. https://doi.org/10.4028/www.scientific.net/AMM.766-767.240
  • K.S. Sridhar Raja, V.K. Bupesh Raja, and M. Gupta, Using Anthropogenic Waste (Steel Slag) To Enhance Mechanical and Wear Properties of A Commercial Aluminium Alloy A356. Arch. Metall. Mater, 64(1), 279–84, 2019. https://doi.org/10.24425/amm.2019. 126249
  • R.N. Prabu, Taguchi Method Analysis of Machining Properties of Al- Slag / Flyash Hybrid Composite. Turkish Journal of Computer and Mathematics Education, 11(03), 1596–603, 2020
  • I.N. Murthy, N.A. Babu, and J.B. Rao, Comparative Studies on Microstructure and Mechanical Properties of Granulated Blast Furnace Slag and Fly Ash Reinforced AA 2024 Composites. Journal of Minerals and Materials Characterization and Engineering, 02(04), 319–33, 2014. https://doi.org/ 10.4236/jmmce.2014.24037
  • K.S.S. Kumar, K.V. Rao, K. Anjaneyulu, and C. Ramakrıshna, Study On Material Properties of Aluminum With Silicon Carbide And Blast Furnace Slag. Anveshana’s International Journal of Research in Engineering and Applied Sciences, 3(2), 207–13, 2018
  • G. Siva Karuna, S.V.G. Swamy, and G.S. Naidu, Effect of Blast Furnace Slag and Red Mud Reinforcements on the Mechanical Properties of AA2024 Hybrid Composites. Advanced Materials Research, 1148, 29–36, 2018. https://doi.org/10.4028/www.scientific.net/ amr.1148.29
  • N. Ashrafi, A.H. Mohamed Ariff, D. Jung, M. Sarraf, J. Foroughi, S. Sulaiman, and T.S. Hong, Magnetic, Electrical, and Physical Properties Evolution in Fe3O4 Nanofiller Reinforced Aluminium Matrix Composite Produced by Powder Metallurgy Method. Materials, 15(12), 4153, 2022. https://doi.org/10.3390/ ma15124153
  • L.-M.-P. Ferreira, E. Bayraktar, I. Miskioglu, and M.-H. Robert, New magnetic aluminum matrix composites (Al-Zn-Si) reinforced with nano magnetic Fe 3 O 4 for aeronautical applications. Advances in Materials and Processing Technologies, 4(3), 358–69, 2018. https://doi.org/10.1080/2374068X.2018.1432940
  • S. a, R. Subramanya, and Y. Basavaraj, Tensile hardness and wear properties of iron oxide (Fe3O4) reinforced aluminium 7075 metal matrix composites. Advances in Materials and Processing Technologies, 00(00), 1–15, 2022. https://doi.org/ 10.1080/2374068X.2022.2079227
  • L.-M.-P. Ferreira, E. Bayraktar, M.-H. Robert, and I. Miskioglu, Optimization of Magnetic and Electrical Properties of New Aluminium Matrix Composite Reinforced with Magnetic Nano Iron Oxide (Fe3O4), in: C. Ralph, M. Silberstein, P. R. Thakre, R. Singh (Eds.), Conference Proceedings of the Society for Experimental Mechanics Series, Vol. 7, Springer International Publishing, Cham, 2016, pp. 11–8
  • L.-M.-P. Ferreira, E. Bayraktar, and M.-H. Robert, Magnetic and electrical properties of aluminium matrix composite reinforced with magnetic nano iron oxide (Fe 3 O 4 ). Advances in Materials and Processing Technologies, 2(1), 165–73, 2016. https://doi.org/10.1080/2374068X.2016.1164529
  • E. Bayraktar and D. Katundi, Development of a new aluminium matrix composite reinforced with iron oxide ( Fe 3 O 4 ). Journal of Achievements in Materials and Manufacturing Engineering, 38(1), 7–14, 2010
  • E. Bayraktar, F. Ayari, M.J. Tan, A. Tosun-Bayraktar, and D. Katundi, Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe3O4) Nanoparticles: Microstructural and Mechanical Properties. Metallurgical and Materials Transactions B, 45(2), 352–62, 2014. https://doi.org/10.1007/s11663-013-9970-1
  • E. Mahmoud and M. Tash, Characterization of Aluminum-Based-Surface Matrix Composites with Iron and Iron Oxide Fabricated by Friction Stir Processing. Materials, 9(7), 505, 2016. https://doi.org/10.3390/ma9070505
  • E. Bayraktar, F. Ayari, M. Jen Tan, A. Tosun-bayraktar, and D. Katundi, Manufacturing of Aluminum Matrix Composites Reinforced with Iron Oxide (Fe 3 O 4 ) Nanoparticles: Microstructural and Mechanical Properties. n.d. https://doi.org/10.1007/ s11663-013-9970-1
  • M.C. Şenel and M. Gürbüz, Partikül Boyutunun ve B4C Katkı Oranının Al-B4C Kompozitlerin Mekanik ve Mikroyapı Özellikleri Üzerine Olan Etkisi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8, 1864–76, 2020. https://doi.org/10.29130/dubited.683876
  • M. Toozandehjani, K.A. Matori, F. Ostovan, K.R. Jamaludin, A. Amrin, and E. Shafiei, The Effect of the Addition of CNTs on the Microstructure, Densification and Mechanical Behavior in Al-CNT-Al2O3 Hybrid Nanocomposites. JOM, 72(6), 2283–94, 2020. https://doi.org/10.1007/s11837-020-04132-5
  • G. Tosun and M. Kurt, The porosity, microstructure, and hardness of Al-Mg composites reinforced with micro particle SiC/Al2O3 produced using powder metallurgy. Composites Part B: Engineering, 174, 106965,2019.https://doi.org/10.1016/j.compositesb.2019.106965
  • E. Özer, M. Ayvaz, M. Übeyli, and İ. Sarpkaya, Properties of Aluminum Nano Composites Bearing Alumina Particles and Multiwall Carbon Nanotubes Manufactured by Mechanical Alloying and Microwave Sintering. Metals and Materials International, 1–18, 2022. https://doi.org/10.1007/s12540-022-01238-0
  • M. Toozandehjanı, F. Ostovan, K.R. Jamaludın, A. Amrın, K.A. Matorı, and E. Shafıeı, Process−microstructure−properties relationship in Al−CNTs−Al2O3 nanocomposites manufactured by hybrid powder metallurgy and microwave sintering process. Transactions of Nonferrous Metals Society of China, 30(9), 2339–54, 2020. https://doi.org/10.1016/S1003-6326(20)65383-3
  • H. Kwon, M. Estili, K. Takagi, T. Miyazaki, and A. Kawasaki, Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites. Carbon, 47(3), 570–7, 2009. https://doi.org/10.1016/ j.carbon.2008.10.041
  • E. Tekoğlu, D. Ağaoğulları, Y. Yürektürk, B. Bulut, and M. Lütfi Öveçoğlu, Characterization of LaB6 particulate-reinforced eutectic Al-12.6 wt% Si composites fabricated via mechanical alloying and spark plasma sintering. Powder Technology, 340, 473–83, 2018. https://doi.org/10.1016/ j.powtec.2018.09.055
  • U. Çavdar, Energy Consumption Analysis of Sintering Temperature Optimization of Pure Aluminum Powder Metal Compacts Sintered by Using The UHFIS. Uluslararası Muhendislik Arastirma ve Gelistirme Dergisi, (December 2018), 174–85, 2017. https://doi.org/10.29137/umagd.348072
  • V. Chak, H. Chattopadhyay, and T.L. Dora, A review on fabrication methods, reinforcements and mechanical properties of aluminum matrix composites. Journal of Manufacturing Processes, 56(May 2019), 1059–74, 2020. https://doi.org/10.1016/j.jmapro.2020.05.042
  • R.M. German, P. Suri, and S.J. Park, Review: liquid phase sintering. Journal of Materials Science, 44(1), 1–39, 2009. https://doi.org/10.1007/s10853-008-3008-0
  • C. Borgohain, K. Acharyya, S. Sarma, K.K. Senapati, K.C. Sarma, and P. Phukan, A new aluminum-based metal matrix composite reinforced with cobalt ferrite magnetic nanoparticle. Journal of Materials Science, 48(1), 162–71, 2013. https://doi.org/10.1007/s10853-012-6724-4
  • A. Maleki, A.R. Taherizadeh, H.K. Issa, B. Niroumand, A.R. Allafchian, and A. Ghaei, Development of a new magnetic aluminum matrix nanocomposite. Ceramics International, 44(13), 15079–85, 2018. https://doi.org/10.1016/j.ceramint.2018.05.141
  • R. Calin, M. Pul, and Z.O. Pehlivanli, The effect of reinforcement volume ratio on porosity and thermal conductivity in Al-Mgo composites. Materials Research, 15(6), 1057–63, 2012. https://doi.org/10.1590/S1516-14392012005000131
  • M. Cabeza, I. Feijoo, P. Merino, G. Pena, M.C. Pérez, S. Cruz, and P. Rey, Effect of high energy ball milling on the morphology, microstructure and properties of nano-sized TiC particle-reinforced 6005A aluminium alloy matrix composite. Powder Technology, 321, 31–43, 2017.https://doi.org/10.1016/j.powtec.2017.07.089
  • S. Aktaş and E. Anıl Diler, Effect of ZrO2 Nanoparticles and Mechanical Milling on Microstructure and Mechanical Properties of Al–ZrO2 Nanocomposites. Journal of Engineering Materials and Technology, 143(4), 2021. https://doi.org/ 10.1115/1.4050726
  • C.F. Deng, D.Z. Wang, X.X. Zhang, and A.B. Li, Processing and properties of carbon nanotubes reinforced aluminum composites. Materials Science and Engineering: A, 444(1–2), 138–45, 2007. https://doi.org/10.1016/j.msea.2006.08.057
  • J.B. Fogagnolo, E.M. Ruiz-Navas, M.H. Robert, and J.M. Torralba, The effects of mechanical alloying on the compressibility of aluminium matrix composite powder. Materials Science and Engineering: A, 355(1–2), 50–5, 2003. https://doi.org/10.1016/S0921-5093(03)00057-1
  • K. Ozturk, R. Gecu, and A. Karaaslan, Microstructure, wear and corrosion characteristics of multiple-reinforced (SiC–B4C–Al2O3) Al matrix composites produced by liquid metal infiltration. Ceramics International, 47(13), 18274–85, 2021. https://doi.org/10.1016/j.ceramint.2021.03.147
  • J. Li, Y. Lu, H. Zhang, and L. Xin, Effect of grain size and hardness on fretting wear behavior of Inconel 600 alloys. Tribology International, 81, 215–22, 2015. https://doi.org/10.1016/j.triboint.2014.08.005
  • A. Mazahery and M.O. Shabani, Microstructural and abrasive wear properties of SiC reinforced aluminum-based composite produced by compocasting. Transactions of Nonferrous Metals Society of China, 23(7), 1905–14, 2013. https://doi.org/10.1016/S1003-6326(13)62676-X.
Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 2564-6605
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2017
  • Yayıncı: Niğde Ömer Halisdemir Üniversitesi