GPS, GLONASS, Galileo ve BeiDou GNSS Sistemlerinin 1. ve 2. Temel Frekanslarının Doluluk Analizi

Günümüzde tam kapasite ile konum belirleme hizmeti sunan dört Küresel Konum Belirleme Sistemi (GNSS) bulunmaktadır. Bunlar GPS, GLONASS, Galileo ve BeiDou’ dur. GPS ve GLONASS uzun yıllardır hizmet verirken, Galileo ve BeiDou son yıllarda dahil olmuştur. Bu çalışmada bu dört GNSS sisteminin 1. ve 2. temel frekanslarının doluluk durumu incelenmiştir. Bu amaçla 05.06.2023 tarihine ait 322 IGS-MGEX istasyonlarına ait (bu tarih için igs.ign.fr adresindeki bütün IGS istasyonları) veriler dikkate alınmıştır. Elde edilen sonuçlara göre GPS frekans doluluk oranlarının diğer uydu sistemlerine göre bir miktar daha iyi olduğu, doluluk oranlarının %96’nın üzerinde olduğu görülmüştür. Diğer uydu sistemlerinde de doluluk oranları GLONASS ikinci frekans hariç %94’ün üzerinde olduğu belirlenmiştir.
Anahtar Kelimeler:

Beidou, Galileo, GLONASS, GPS

Availability Analysis of 1st and 2nd Fundamental Frequencies of GPS, GLONASS, Galileo and BeiDou GNSS Systems

Today, there are four global positioning systems (GNSS) that provide positioning with full capacity. These are GPS, GLONASS, Galileo and BeiDou. While GPS and GLONASS provide positioning for many years, Galileo and BeiDou have been involved in recent years. In this study, the availability status of the 1st and 2nd fundamental frequencies of these four GNSS systems was investigated. For this purpose, the data of 322 IGS stations dated 05.06.2023 (all IGS stations for this date at igs.ign.fr) were taken into account. According to the results, it was seen that the GPS frequency availability rates were slightly better than other satellite systems, and the availability rates were above 96%. It has been determined that the availability rates in other satellite systems are above 94% except for the GLONASS second frequency.

___

  • M. Reguzzoni, L. Rossi, C.I. De Gaetani, S. Caldera, R. Barzaghi, GNSS-Based Dam Monitoring: The Application of a Statistical Approach for Time Series Analysis to a Case Study, Applied Science. 12 (2022), 9981. https://doi.org/10.3390/app12199981
  • S.S. Durduran, İ, Kalaycı, M. Şen, Kadastral Ölçmelerde Motorize GPSSİT (GPS Sanal İstasyon Tekniği) Yönteminin Kullanılabilirliği ve Coğrafi Bilgi Sistemine Entegrasyonu, TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultay., 11­15 Mayıs (2009), Ankara
  • E. Jonuzi, S.S. Durduran, T. Alkan, North Macedonian Cadastre Towards Cadastre 2034, Necmettin Erbakan University Journal of Science and Engineering. 4(2) (2022), 26-44, https://dergipark.org.tr/en/pub/neufmbd/issue/74887/1205803
  • A. Varlık, M. Erdönmez, Yapılaşmış Alanlarda İnsansız Hava Araçları ile Eğik Resim Fotogrametrisi Uygulaması, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2(2) (2020), 1-11, https://dergipark.org.tr/tr/pub/neufmbd/issue/59145/819853
  • B. Keleş, S.S. Durduran, Osmaniye İlinin Arazi Örtüsü ve Kullanımındaki Zamansal Değişimin Uzaktan Algılama Teknikleri ile Araştırılması, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 1(1) (2019), 32-52, https://dergipark.org.tr/tr/pub/neufmbd/issue/44699/539863
  • C. Cai, Y. Gao, Precise Point Positioning Using Combined GPS and GLONASS Observations, Journal of Global Positioning Systems. 6(1) (2007), 13–22.
  • S. Alcay, C. Inal, C.O. Yigit, M. Yetkin, Comparing GLONASS-only with GPS-only and Hybrid Positioning in Various Length of Baselines, Acta Geodaetica et Geophysica Hungarica. 47(1) (2012), 1-12, https://doi.org/10.1556/AGeod.47.2012.1.1
  • C. Cai, Y. Gao, GLONASS-Based Precise Point Positioning and Performance Analysis, Advances in Space Researc.. 51(3) (2013), 514-524, https://doi.org/10.1016/j.asr.2012.08.004
  • A. Angrisano, S. Gaglione, C. Gioia, Performance Assessment of GPS/GLONASS Single Point Positioning in an Urban Environment, Acta Geodaetica et Geophysica. 48 (2013), 149–161, https://doi.org/10.1007/s40328-012-0010-4doi:10.1016/S0169-4332(02)00614-1
  • C.O. Yigit, V. Gikas, S. Alcay, A. Ceylan, Performance Evaluation of Short to Long Term GPS, GLONASS and GPS/GLONASS Post-Processed PPP, Survey Review, 46(3) (2014), 155-166, https://doi.org/10.1179/1752270613Y.0000000068
  • R.M. Alkan, V. Ilci, I.M. Ozulu, M.H. Saka, A Comparative Study for Accuracy Assessment of PPP Technique Using GPS and GLONASS in Urban Areas, Measurement. 69 (2015), 1–8. https://doi.org/10.1016/j.measurement.2015.03.012
  • Ö. Yurdakul, İ. Kalaycı, GLONASS’ın Kısa Bir Bazda (5 Km) Ağ Bazlı RTK Tekniklerine (VRS, FKP, MAC) Etkisi, Necmettin Erbakan Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 2(2) (2020), 38 - 51, https://dergipark.org.tr/tr/pub/neufmbd/issue/59145/825596
  • F. Xia, S. Ye, P. Xia, L. Zhao, N. Jiang, D. Chen, G. Hu, Assessing the Latest Performance of Galileo-Only PPP and the Contribution of Galileo to Multi-GNSS PPP, Advances in Space Research. 63(9) (2019), 2784–2795. https://doi.org/10.1016/j.asr.2018.06.008
  • W. Liu, M. Wu, X. Zhang, W. Wang, W. Ke, Z. Zhu, Single-epoch RTK Performance Assessment of Tightly Combined BDS-2 and Newly Complete BDS-3, Satellite Navigation. 2(6) (2021), 1–17, https://doi.org/10.1186/s43020-021-00038-y
  • G. Jiao, S. Song, Y. Ge, K, Su, Y. Liu, Assessment of BeiDou-3 and Multi-GNSS Precise Point Positioning Performance, Sensors. 19 (2019), 2496. https://doi.org/10.3390/s19112496
  • K. Su, S. Jin, & Y. Ge, Rapid Displacement Determination with a Stand-Alone Multi-GNSS Receiver: GPS, Beidou, GLONASS, and Galileo, GPS Solutions. 23, 54 (2019). https://doi.org/10.1007/s10291-019-0840-4
  • S. Erol, Comparative Study for Performance Analysis of Kinematic Multi-Constellation GNSS PPP in Dynamic Environment, Journal of Marine Science and Engineering. 8 (2020), 514. https://doi.org/10.3390/jmse8070514
  • H. Karimi, An Analysis of Satellite Visibility and Single Point Positioning with GPS, GLONASS, Galileo, and BeiDou-2/3, Applied Geomatics. 13 (2021), 781–791, https://doi.org/10.1007/s12518-021-00391-2
  • S. Ogutcu, A. Shakor, H. Farhan, Investigating the Effect of Observation Interval on GPS, GLONASS, Galileo and BeiDou static PPP, International Journal of Engineering and Geosciences. 7(3) (2022), 294-301, https://doi.org/10.26833/ijeg.980148
  • Z. Hou, F. Zhou, Assessing the Performance of Precise Point Positioning (PPP) with the Fully Serviceable Multi-GNSS Constellations: GPS, BDS-3, and Galileo, Remote Sensing. 15 (2023), 807. https://doi.org/10.3390/rs15030807
  • P. Liu, K.V. Ling, H. Qin, T. Liu, Performance Analysis of Real-Time Precise Point Positioning with GPS and BDS State Space Representation, Measurement. 215 (2023), 112880, https://doi.org/10.1016/j.measurement.2023.112880
  • X. Yan, C. Liu, M. Jiang, M. Yang, W. Feng, M. Zhong, I. Peng, Performance Analysis of Oceanographic Research Vessel Precise Point Positioning Based on BDS/GNSS RTK Receivers, Measurement. 211 (2023), 112637, https://doi.org/10.1016/j.measurement.2023.112637
  • L. Zhao, P. Blunt, L. Yang, S. Ince, Performance Analysis of Real-Time GPS/Galileo Precise Point Positioning Integrated with Inertial Navigation System, Sensors. 23 (2023), 2396. https://doi.org/10.3390/s23052396
  • J. Chen, X. Zhao, C. Liu, S. Zhu, Z.Liu, D. Yue, Evaluating the Latest Performance of Precise Point Positioning in Multi-GNSS/ RNSS: GPS, GLONASS, BDS, Galileo and QZSS, The Journal of Navigation. 74(1) (2020), 247–267. https://doi.org/10.1017/S0373463320000508
  • B. Duan, U. Hugentobler, O. Montenbruck, P. Steigenberger, Performance of Galileo Satellite Products Determined from Multi-Frequency Measurements, Journal of Geodesy. 97(4) (2023), 32, https://doi.org/10.1007/s00190-023-01723-3
  • P. Steigenberger, Z. Deng, J. Guo, L. Prange, S. Song, O. Montenbruck, BeiDou-3 Orbit and Clock Quality of the IGS Multi-GNSS Pilot Project, Advances in space research. 71(1) (2023), 355-368, https://doi.org/10.1016/j.asr.2022.08.058
  • F. Guo, X. Li, X. Zhang, J. Wang, Assessment of Precise Orbit and Clock Products for Galileo, BeiDou, and QZSS from IGS Multi-GNSS Experiment (MGEX), GPS Solutions, 21 (2017), 279-290, https://doi.org/10.1007/s10291-016-0523-3
  • S. Schaer, SINEX BIAS—Solution (Software/technique) INdependent EXchange Format for GNSS BIASes Version 1.00, (2011). http://ftp.aiub.unibe.ch/bcwg/format/draft/sinex_bias_100_feb07.pdf (Erişim 8 Haziran 2023)
  • W. Gurtner, & L. Estey, Rinex-the Receiver Independent Exchange Format-Version 3.00. Astronomical Institute, University of Bern and UNAVCO, (2007), Bolulder, Colorado.