İlköğretim Matematik Öğretmen Adaylarının Lisans Eğitiminde Alınan Matematik Konu Alan Derslerine İlişkin Görüşleri

Bu araştırmanın amacı, ilköğretim matematik öğretmenliği programında öğrenim gören öğretmen adaylarının matematik konu alan derslerine ilişkin görüşlerini belirlemektir. Bu araştırma nitel araştırma desenlerinden biri olan olgu bilim deseni kapsamında yürütülmüştür. Çalışmanın araştırma gurubunu oluşturan 43 matematik öğretmen adayı seçiminde bir amaçlı örnekleme yöntemi olan ölçüt örnekleme yönteminden yararlanılmıştır. Veri toplama aracı olarak açık uçlu bir anket formu uygulanarak öğretmen adaylarının görüşleri yazılı olarak alınmıştır. Veri analizi nitel veri analizi yazılımı olan NVivo 11 yardımıyla içerik analizi yöntemi kullanılarak gerçekleştirilmiştir. Araştırmanın sonuçları, lisans matematik derslerinin, öğretmen adaylarının matematiksel becerilerinin genel gelişimine odaklanması gerektiğini ve sadece konu alan bilgisinin aktarılması yerine, kavramsal ilişkileri kurmak için dikkatli bir akıl yürütme ve matematiksel sağduyu geliştirerek matematiğin derinlemesine anlaşılmasının gerekliğini ortaya çıkarmıştır. Ayrıca, diğer matematiksel kavramlar ve gerçek yaşam durumlarıyla ilişkili geniş kapsamlı ve detaylı matematiksel konu alan bilgisinin öğretimi, öğretmen adaylarının matematik derslerine yönelik motivasyonlarını artıracak ve öğretilen matematiği daha anlamlı kılacaktır. 

Preservice Elementary Mathematics Teachers’ Views about Mathematics Subject Matter Courses Taken in Undergraduate Education

The purpose of this study is to explore the preservice elementary mathematics teachers’ views about mathematics subject matter courses taken in undergraduate education. This study used a phenomenological qualitative design. Criterion sampling method, which is one of the purposeful sampling approaches, was used for selecting 43 preservice mathematics teachers. An open-ended questionnaire was used as a data collection tool. Data analysis was conducted by using a content analysis method with the help of the qualitative data analysis software NVivo11. The results of the study revealed that undergraduate mathematics courses should focus on the overall development of prospective teachers’ mathematical skills and provide a deep understanding of mathematics by developing thoughtful reasoning and mathematical common sense to build conceptual relationships instead of transferring only subject matter knowledge. Emphasizing the importance of comprehensive and deep mathematical content knowledge associated with other mathematical concepts and real life situations will also increase prospective teachers’ motivation towards mathematics subject courses and make the mathematics learned meaningful.

___

  • Ball, D. L. (1990). The mathematical understandings that prospective teachers bring to teacher education. The Elementary School Journal, 90(4), 449-466.
  • Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: Knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on the teaching and learning of mathematics (pp. 83-104). Westport, CT: Ablex.
  • Ball, D. L., & Wilson, S. M. (1990). Knowing the subject and learning to teach it: Examining assumptions about becoming a mathematics teacher. (Research Report No.90-7). East Lansing, MI: NCRTL, Michigan State University.
  • Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching: Who knows mathematics well enough to teach third grade, and how can we decide? American Educator, 29, 12-22.
  • Ball, D. L., Lubienski, S. T., & Mewborn, D. S. (2001). Research on teaching mathematics: The unsolved problem of teachers’ mathematical knowledge. In V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 433-456). Washington, DC: American Educational Research Association.
  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special? Journal of Teacher Education, 59(5), 389-407.
  • Barton, B., & Sheryn, L. (2009). The mathematical needs of secondary teachers: Data from three countries. Int J Math Educ Sci Technol, 40, 101-108.
  • Baumert, J., Kunter, M., Blum, W., Brunner, M., Voss, T., Jordan, A., Klusmann, U., Krauss, S., Neubrand, M., & Tsai, Y-M. (2010). Teachers’ mathematical knowledge, cognitive activation in the classroom, and student progress. American Educational Research Journal, 47(1), 133-180.
  • Bolyard, J. J., & Moyer-Packenham, P. S. (2008). A review of the literature on mathematics and science teacher quality. Peabody Journal of Education, 83(4), 509-535.
  • Bryan, T. J. (1999). The conceptual knowledge of pre-service secondary mathematics teachers: How well do they know the subject matter they will teach? Issues in the Undergraduate Mathematics of School Teachers: The Journal. 1.
  • Clotfelter, C. T., Ladd, H. F., & Vigdor, J. L. (2007). Teacher credentials and student achievement in high school: A cross-subject analysis with student fixed effects. Economics of Education Review, 26(6), 673-782.
  • Conference Board of the Mathematical Sciences. (CBMS). (2001). The Mathematical Education of Teachers-Issues on Mathematics Education (Vol. 11). Providence, RI: American Mathematical Society.
  • Corbin, J. M. & Strauss, A. L. (2015). Basics of qualitative research: Techniques and procedures for developing grounded theory (4th ed.) Thousand Oaks, CA: SAGE.
  • Darling-Hammond, L. (2000). Teacher quality and student achievement: A review of state policy evidence. Educational Policy Analysis Archives, 8(1).
  • Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the mathematics that teachers (need to) know. Educational Studies in Mathematics, 61, 293-319.
  • Demircan, A. (2010). İlköğretim matematik öğretmenliği programındaki alan derslerinin meslekteki kullanılabilirliğine dair öğretmen ve öğretmen adayı görüşleri (Yayınlanmamış Yüksek Lisans Tezi). Balıkesir Üniversitesi, Balıkesir.
  • Even, R. (1993). Subject-matter knowledge and pedagogical content knowledge: Prospective secondary teachers and the function concept. Journal for Research in Mathematics Education, 24(2), 94-116.
  • Fetler, M. (1999). High school staff characteristics and mathematics test results. Education Policy Analysis Archives, 7(9).
  • Goldhaber, D. & Brewer, D. (1999). Teacher Licensing and Student Achievement. In M. Kanstoroom & C. E. Finn, Jr (Ed.), Better Teachers, Better Schools (pp. 83-102). Washington, DC: The Thomas B. Fordham Foundation.
  • Goos, M. (2013). Knowledge for teaching secondary school mathematics: what counts? International Journal of Mathematical Education in Science and Technology, 44(7), 972-983.
  • Gür, B. S., Çelik, Z., Coşkun, İ. & Görmez, M. (2014). 2013’te eğitim (Analiz No. 75). Ankara: Siyaset, Ekonomi ve Toplum Araştırmaları Vakfı.
  • Heid, M. K., Blume, G. W., Zbiek, R. M., & Edwards, B. S. (1999). Factors that influence teachers learning to do interviews to understand students’ mathematical understandings. Educational Studies in Mathematics, 37, 223-249.
  • Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on student achievement. American Educational Research Journal, 42, 371-406.
  • Hill, H., Sleep, L., Lewis, J. M., & Ball, D. L. (2007). Assessing teachers’ mathematical knowledge: What knowledge matters and what evidence counts. In K. F. Lester (Ed.), Second handbook of research on mathematics teaching and learning (pp. 111-155). Reston, VA: NCTM.
  • Klein, F. (1932). Elementary mathematics from an advanced standpoint: Arithmetic, algebra, analysis (E. R. Hedrick & C. A. Noble, Trans.). Mineola, NY: Macmillan.
  • Leinhardt, G. (2001). Instructional explanations: A commonplace for teaching and location for contrast. In V. Richardson (Ed.), Handbook of research on teaching (4th ed., pp. 333–357). Washington, DC: American Educational Research Association.
  • Leitzel, J. R. C. (Ed.). (1991). A call for change: Recommendations for the mathematical preparation of teachers. Washington, DC: Mathematical Association of America.
  • Ma, L. (1999). Knowing and teaching elementary mathematics: Teachers’ understanding of fundamental mathematics in China and the United States. Mahwah, NJ: Erlbaum.
  • McCrory, R., Floden, R., Ferrini-Mundy, J., Reckase, M. D., & Senk, S. L. (2012). Knowledge of algebra for teaching: A framework of knowledge and practices. Journal for Research in Mathematics Education, 43(5), 584-615.
  • Merriam, S. B. (2013). Nitel araştırma: Desen ve uygulama için bir rehber. (Çev. Ed.: Selahattin Turan). Ankara: Nobel Akademik Yayıncılık.
  • Mewborn, D. (2003). Teachers, teaching, and their professional development. In J. Kilpatrick, W. G. Martin & D. Schifter (Eds.), A research companion to principles and standards for school mathematics (pp. 45-52). Reston, VA: National Council of Teachers of Mathematics.
  • Miles, M. B. & Huberman A. M. (1996) Qualitative Data Analysis: An Expanded Sourcebook of N ew Methods. Thousand Oaks, CA: SAGE.
  • Monk, D. H. (1994). Subject area preparation of secondary mathematics and science teachers and student achievement. Economics of Education Review, 13(2), 125-145.
  • National Council of Teachers of Mathematics. (NCTM). (2000). Principles and standards for school mathematics. Reston, VA: Author.
  • National Mathematics Advisory Panel (2008). Foundations for success: The final report of the National Mathematics Advisory Panel. Jessup, MD: US Department of Education.
  • National Research Council (2010). Preparing teachers: Building evidence for sound policy. Committee on the Study of Teacher Preparation Programs in the United States, Center for Education. Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  • National Research Council. (2001). Adding it up: Helping children learn mathematics. Mathematics Learning Study Committee. J. Kilpatrick, J. Swafford, and B. Findell (Eds.). Washington, DC: National Academy Press.
  • Özoğlu, M. (2010, Şubat). Türkiye’de Öğretmen Yetiştirme Sisteminin Sorunları. Seta Analiz. Sayı 17.
  • Patton, M. Q. (2002). Qualitative research & evaluation methods. California: Sage Publications Inc.
  • Putnam, R. T., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research on teacher learning? Educational Researcher, 29(1), 4-15.
  • Rivkin, S. G., Hanushek, E. A., & Kain, J. F. (2005). Teachers, schools, and academic achievement. Econometrica, 73(2), 417-458.
  • Rockoff, J. E. (2004). The impact of individual teachers on student achievement: Evidence from panel data. American Economic Review, 94 (2), 247-252.
  • Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching. Educational Researcher, 15(2), 4-14.
  • Tatto, M., & Senk, S. (2011). The mathematics education of future primary and secondary teachers: Methods and findings from the teacher education and development study in mathematics. Journal of Teacher Education, 62(2), 121-137.
  • Wasserman, N. H. (2016). Abstract Algebra for Algebra Teaching: Influencing School Mathematics Instruction. Canadian Journal of Science, Mathematics and Technology Education, 16(1), 28-47.
  • Wenglinsky, H. (2002). How schools matter: The link between teacher classroom practices and student academic performance. Education Policy Analysis Archives, 10, 12.
  • Whittington, D. (2002). 2000 National survey of science and mathematics education: Status of high school mathematics teaching. Horizon Research Inc.
  • Wilson, S. W, Floden, R. E., & Ferrini-Mundy, J. (2001). Teacher preparation research: Current knowledge, gaps, and recommendations. Research report prepared for the U.S. Department of Education. Seattle, WA: Center for the Study of Teaching and Policy.
  • Yenilmez, K., & Turgut, M. (2012). Matematik öğretmeni adaylarının matematik okuryazarlığı özyeterlik düzeyleri. Eğitim ve Öğretim Araştırmaları Dergisi, 1(2), 253-258.
  • Yıldırım, A. & Şimşek, H. (2016). Sosyal bilimlerde nitel araştırma yöntemleri, 10. Baskı, Ankara: Seçkin Yayıncılık.
  • Yılmaz, B. Y. (2014). İlköğretim matematik öğretmenliği derslerinin mesleki kullanılabilirliği (Yayınlanmamış Yüksek Lisans Tezi). Eskişehir Osmangazi Üniversitesi, Eskişehir.
  • Yükseköğretim Kurulu. (YÖK). (2018). İlköğretim Matematik Öğretmenliği Lisans programı.
  • Zazkis, R., & Leikin, R. (2010). Advanced mathematical knowledge in teaching practice: Perceptions of secondary mathematics teachers. Mathematical Thinking and Learning, 12(4), 263-281.
  • Zazkis, R., & Mamolo, A. (2011). Reconceptualizing knowledge at the mathematical horizon. For the Learning of Mathematics, 31(2), 8-13.
Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi-Cover
  • ISSN: 1307-6086
  • Yayın Aralığı: 2
  • Başlangıç: 2007
  • Yayıncı: Balıkesir Üniv. Necatibey Eğitim Fak.
Sayıdaki Diğer Makaleler

7.Sınıf Öğrencilerinin Dörtgenler Konusundaki İspat Seviyelerinin İncelenmesi

Zülfiye ZEYBEK ŞİMŞEK, Aslıhan ÜSTÜN

Fizik Öğretmenlerinin Ölçme ve Değerlendirme Tercihleri ve Performansa Dayalı Ölçümler İle İlgili Karşılaştıkları Zorluklar

Bekir TANUĞUR, Ogan Feral BEKİROĞLU

Fen, Matematik ve Sosyal Bölümlerde Okuyan Üniversite Öğrencilerinin Yürütücü Biliş Becerilerinin Akademik Mükemmeliyetçiliklerinin ve Akademik Erteleme Davranışlarının Çeşitli Değişkenler Açısından İncelenmesi

Uğur GÜRGAN, İmran GÜNDOĞDU

Sanal Gerçeklik Tabanlı Öğretim Materyalinin Öğrenme Güçlüğü Olan Öğrencilerde Geometriye Dayalı Problem Çözme Üzerine Etkililiği

Hasan ALTUN, Gül KAHVECİ

Ortaokul Öğrencilerinin Bilimsel Değerlere Eğilim Düzeyleri ile STEM Meslek Alanlarına İlgileri Arasındaki İlişkinin İncelenmesi

Kevser HERDEM, İBRAHİM ÜNAL

Türkiye’de 2002-2018 Yılları Arasında Matematik Ders Kitapları Üzerine Yapılmış Tezlerin ve Makalelerin Analizi

Sevgi Çisem DEDE, Selahattin ARSLAN

9.Sınıf Öğrencilerinin Matematiksel Okuryazarlıklarının Akademik Başarı ve Öğrenme Stillerine Göre İncelenmesi

Kübra EFE ÇETİN, Sevinç MERT UYANGÖR

İlkokul Fen Bilimleri Ders Kitaplarında Kavram Yanılgılarına Neden Olabilecek Sözel ve Görsel İçerik

Serpil KARA, Banu AKTÜRKOĞLU

7. Sınıf Öğrencilerinin Doğrular ve Açılar Konusunda Matematiksel Dil Kullanım Düzeyleri Ve Dile İlişkin Görüşleri

Zehra TÜRKMEN, Süha YILMAZ

INVESTIGATION OF CLASSIFICATION INDICES ON TIMSS-2015 MATHEMATIC-SUBTEST THROUGH BAYESIAN AND NONBAYESIAN ESTIMATION METHODS

Serpil ÇELİKTEN, Mehtap ÇAKAN