Magnetic Resonance Imaging Compatible Biomaterials For Realization of Interventional Operations

Magnetic Resonance Imaging Compatible Biomaterials For Realization of Interventional Operations

Realization of interventional therapeutic procedures with guidance of Magnetic Resonance Imaging (MRI) is a promising novelty in area of interventional surgery because of eliminating x-ray exposure to patient body. Together with radiation free nature, advances in MRI techniques present superior soft tissue contrast and real time physiologic parameters from related tissue. However, the strong static magnetic field, magnetic radiofrequency (RF) pulses, and time-varying gradient fields applied during MRI, may result in exceeded heating risk over interventional instruments and adjacent tissue inside patient body. Additionally, since real time tracking and determination of device position inside patient body is critical for operators, sufficient visibility under MRI is another challenging issue to overcome. Therefore, proper biomaterials must be utilized for designing and development of MRI compatible interventional instruments by considering many factors including biocompatibility, MRI safety, MRI visibility, and other mechanical needing.

___

  • 1. World Health Organization. Communicating Radiation Risks in Paediatric Imaging: Information to support health care discussions about benefit and risk. Switzerland, World Health Organization, 2016. https://apps.who.int/iris/handle/10665/205033.
  • 2. United Nations. Sources and Effects of Ionizing Radiation: United Nations Scientific Committee on the Effects of Atomic Radiation, UNSCEAR 2000 Report to the General Assembly, with Scientific Annexes. Vol. I:SOURCES. New York: United Nations, 2000.
  • 3. Vano, Eliseo, Luciano Gonzalez, Jose M. Fernández and Ziv J. Haskal. “Eye Lens Exposure to Radiation In Interventional Suites: Caution Is Warranted.” Radiology. Vol. 248, no. 3 (2008): 945- 953.
  • 4. Goldstein, James A., Stephen Balter, Michael Cowley, John Hodgson and Lloyd W. Klein. "Occupational Hazards of Interventional Cardiologists: Prevalence of Orthopedic Health Problems in Contemporary Practice.” Catheterization and Cardiovascular Interventions, Vol. 63, no. 4 (2004): 407-411.
  • 5. Lederman, Robert J. “Cardiovascular Interventional MRI”, NIH Public Access, Vol. 112, no. 19(2005): 3009-3017.
  • 6. Barkhausen, Jörg., Thomas Kahn, Gabriele A. Krombach, Christiane K. Kuhl, Joachim Lotz, David Maintz, Jense Ricke, Stefan O. Schönberg, Thomas J. Vogl, and Frank K. Wacker. “White Paper: Interventional MRI: Current Status and Potential for Development Considering Economic Perspectives, Part 1: General Application.” Fortschr Röntgenstr, Vol. 189, no. 7, (2017): 611-623. https://doi.org/10.1055/s-0043-110011
  • 7. Ratner, Buddy, Allan Hoffman, Frederick Schoen and Jack Lemons, eds. Biomaterials Science:An Introduction To Materials In Medicine. Third Edition. Oxford: ELSEVIER, 2012
  • 8. Atalar, Ergin, Paul A. Bottomley, Ogan Ocali, Luis C. L. Correia, Mark D. Kelemen, Joao A. Lima and Elias A. Zerhouni. “High Resolution Intravascular MRI and MRS by Using a Catheter Receiver Coil.” Magnetic Resonance in Medicine, Vol. 36, no. 4, (1996): 596-605.
  • 9. ICNIRP, ICNIRP Guidelines for Limiting Exposure to Time Varying Electric, Magnetic and Electromagnetic Fields (Up To 300 Ghz), ICNIRP Publication , Vol. 74, no. 4, pp. 494-523, 1998.
  • 10. .Shellock Frank G. “Magnetic Resonance Safety Update 2002: Implants and Devices.” Journal of Magnetic Resonance Imaging no.16, (2002): 485–496.
  • 11. Istanbullu O. Burak, Gülşen Akdoğan. “Evaluation of MRI Compatibility and Safety Risks for Biomaterials.” Tıp Teknolojileri Ulusal Kongresi (2015): 368-375.
  • 12. Settecase Fabio, Martin Alastair, Prasheel Lillaney, Aaron Losey and Steven Hetts . “Magnetic Resonance-Guided Passive Catheter Tracking for Endovascular Therapy.” Magn Reson Imaging Clin N. Am vol. 23, no. 4, (2015):591-605
  • 13. Levine Glenn N. , Antoinette S. Gomes, Andrew E. Arai, David A. Bluemke, Scott D. Flamm, Emanuel Kanal, Warren J. Manning, Edward T. Martin, J. Michael Smith, Norbert Wilke and Frank S. Shellock. “Safety of Magnetic Resonance Imaging in Patients With Cardiovascular Devices.” Circulation, No:116 (2007): 2878-2891
  • 14. Seppenwoolde, Jan-Henry, Max A. Viergever, and Chris J. Bakker. “Passive Tracking Exploiting Local Signal Conservation: The White Marker Phenomenon.” Magnetic Resonance in Medicine, Vol. 50, no. 4 (2003): 784-790.
  • 15. Zijlstra, Frank. Knowledge-based acceleration of MRI for metal object localization, 1985.
  • 16. Kozerke, Sebastian, and Jeffrey Tsao. “Reduced Data Acquisition Methods in Cardiac Imaging.” Top Magn Reson Imaging, Vol:15 No:3 (2004): 161-168.
  • 17. Magnusson, Peter, Edvin Johansson, Sven Månsson, J. Stefan Petersson, Chun-Ming Chai, Georg Hansson, Oskar Axelsson, and Klaes Golman. “Passive Catheter Tracking During Interventional MRI Using Hyperpolarized 13C.” Magnetic Resonance in Medicine, Vol. 57, no. 6, (2007): 1140- 1147.
  • 18. Bakker, Chris J., Romhild M. Hoogeveen, Jan Weber, Joop J. Van Vaals, Max A. Viergever, and Willem P. Mali. “Visualization of dedicated catheters using fast scanning techniques with potential for MR-guided vascular interventions.” Magnetic Resonance in Medicine, Vol. 36, no. 6, (1996): 816-820.
  • 19. Nanz, Daniel, Dominik Weishaupt, Harald H. Quick, and Jörg F. Debatin. “TE-Switched Double- Contrast Enhanced Visualization of Vascular System And Instruments for MR-Guided Interventions.” Magnetic Resonance in Medicine, Vol.43, no.5 (2000): 645-648.
  • 20. Prince, Martin R. “Gadolinium-enhanced MR Aortography.” Radiology, Vol. 191, no. 1 (1994): 155-164.
  • 21. Omary, Reed A., Orhan Unal, Daniel S. Koscielski, Richard Frayne, Frank R. Korosec, Charles A. Mistretta, Charles M. Strother, and Thomas M. Grist. “Real-Time MR Imaging-Guided Passive Catheter Tracking With Use of Gadolinium-Fillled Catheters.” Journal of Vascular and Interventional Radiology Vol. 11, no. 8 (2000): 1079-1085.
  • 22. Bakker, C. J. G., C. Bos, and H. J. Weinmann. “Passive tracking of catheters and guidewires by contrast-enhanced MR Fluoroscopy.” Magnetic Resonance in Medicine Vol. 45, no. 1 (2001):17- 23.
  • 23. Draper, Jonathan N., M. Louis Lauzon, and Richard Frayne. “Passive Catheter Visualization In Magnetic Resonance-Guided Endovascular Therapy Using Multicycle Projection Dephasers.” Journal of Magnetic Resonance Imaging Vol. 24, no. 1 (2006):160-167.
  • 24. Dominguez-Viqueira, William, Hirad Karimi, Wilfred W. Lam, and Charles H. Cunningham. “A Controllable Susceptibility Marker for Passive Device Tracking.” Magnetic Resonance in Medicine Vol. 72, no. 1, (2014): 269-275.
  • 25. Rubin, David A., and Bruce Kneeland. “MR imaging of the musculoskeletal system: technical considerations for enhancing image quality and diagnostic yield.” AJR American Journal of Roentgenology Vol. 163, no. 5 (1994): 1155-1163.
  • 26. Frericks B.B., Elgort D.R., Hillenbrand C., Duerk J.L., Lewin J.S. and Wacker F.K. “Magnetic Resonance Imaging-Guided Renal Artery Stent Placement in a Swine Model: Comparison of Two Tracking Techniques.” Acta Radiologica Vol:50, No:1 (2009): 21-7.
  • 27. Heunis, Christoff, Jakub Sikorski and Sarthak Misra. “Flexible Instruments for Endovascular Interventions: Improved Magnetic Steering, Actuation, and Image-Guided Surgical Instrument”, IEEE Robotics & Automation Magazine, (2018) https://www.researchgate.net/publication/323950185
  • 28. Kantor, Howard L., Richard W. Briggs, and Robert S. Balaban. “In Vivo 31P Nuclear Magnetic Resonance Measurements in Canine Heart Using a Catheter-Coil.” Circulation research Vol. 55, no. 2, (1984): 261-266.
  • 29. Glowinski, Arndt, Gerhard Adam, Arno Bücker, Jörg Neuerburg, Joop J. Van Vaals, and Rolf W. Günther. “Catheter Visualization Using Locally Induced, Actively Controlled Field Inhomogeneities.” Magnetic Resonance in Medicine Vol. 38, no. 2 (1997): 253-258.
  • 30. Quick, H. H., M. O. Zenge, H. Kuehl, G. M. Kaiser, S. Aker, H. Eggebrecht, S. Massing, and M. E. Ladd. “Wireless Active Catheter Visualization: Passive Decoupling Methods and Their Impact on Catheter Visibility.” ISMRM Vol. 13, no. c (2005): 2164.
  • 31.Alipour Akbar., Sayim Gokyar, Oktay Algin, Ergin Atalar and Hilmi Volkan Demir. “An inductively coupled ultra-thin, flexible, and passive RF resonator for MRI marking and guiding purposes: Clinical feasibility.” Magn Reson Med. Vol.80 No.1 ( 2017):361-370.
  • 32. Baysoy, Engin, Dursun Korel Yildirim, Cagla Ozsoy, Senol Mutlu and Ozgur Kocaturk. “Thin film based semi-active resonant marker design for low profile interventional cardiovascular MRI devices.” Magnetic Resonance Materials in Physics, Biology and Medicine Vol. 30, no. 1, (2017):93-101.
  • 33. Padmanabhan, Parasuraman, Ajay Kumar, Sundramurthy Kumar, Ravi Kumar Chaudhary and Balázs Gulyás. Nanoparticles in practice for molecular-imaging applications: an overview, Acta Biomaterialia, 2016.