SARS-CoV-2’ye Karşı Doğal Terapötiklerin Potansiyeli: Fenolik Bileşikler ve Terpenler

2019 yılının sonlarında Çin’de ortaya çıkan şiddetli, koronavirüs akut solunum yolu sendromu-koronavirüs-2’nin (SARS-CoV-2) neden olduğu koronavirüs hastalığı-2019, insan yaşamının hemen hemen her sektörünü etkileyen ve dünya ekonomisine büyük zarar veren benzeri görülmemiş bir küresel sağlık krizi meydana getirmiştir. SARS-CoV-2, yalnızca üst solunum yolu enfeksiyonuna neden olmakla kalmayıp aynı zamanda alt solunum yolu mukozası tutulumu da yapabilen ve bu sebeple pnömoniye neden olarak bazı hastalarda ölüme yol açan viral bir solunum yolu virüsüdür. Şu anda SARS-CoV-2 tedavisi için kanıtlanmış bir ilaç olmaması ile birlikte, tedavi için birçok kimyasal ve doğal aktif bileşik araştırmacılar tarafından test edilmiştir. Bu bitkisel bazlı antiviraller, daha az toksik oldukları ve enfeksiyöz mikroorganizmalar tarafından direnç geliştirilmesi daha düşük olasılıklı olduğu için birçok araştırmanın konusu olmuştur. Doğal terapötiklerin viral replikasyonu engellediği de birçok çalışmada bildirilmiştir. Bu derlemede, antiviral aktiviteye sahip olduğu bilinen doğal terapötikler olan fenolik bileşikler ve terpenler, SARS-CoV-2 tedavisinde kullanım potansiyelleri açısından ele alınmıştır.

Potential of Natural Therapeutics Against SARS-CoV-2: Phenolic Compounds and Terpenes

Coronavirus disease-2019 caused by severe-coronavirus acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) which emerged in China in late 2019 has created an unprecedented global health crisis affecting every sector of human life and causing great damage to the world economy. SARS CoV-2 is a viral respiratory tract virus that not only causes upper respiratory tract infection but also causes pneumonia and therefore mortality in some patients. There is currently no proven drug for the treatment of SARS-CoV-2. Many chemical and natural active compounds have been testing by the researchers for the treatment. These herbal-based antivirals have been the subject of many studies as they are less toxic and less likely to develop resistance by infectious microorganisms. It has been reported in many studies that natural therapeutics inhibit viral replication. In this review, phenolic compounds and terpenes, which are natural therapeutics known to have antiviral activity, have been evaluated for their potential in the treatment of SARS-CoV-2.

___

  • 1. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181:271-80.e8.
  • 2. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020;10:766-88.
  • 3. Khanal LN, Pokharel YR, Sharma K, Kalauni SK. Plant-Derived secondary metabolites as potential mediators against COVID-19: A review. PAJ, “COVID-19 & Beyond”. 2020;3:1-18.
  • 4. Kırbaş İ, Sözen A, Tuncer AD, Kazancıoğlu FŞ. Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches. Chaos Solitons Fractals. 2020;138:110015.
  • 5. Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581:221-4.
  • 6. Kyriakidis NC, López-Cortés A, González EV, Grimaldos AB, Prado EO. SARS CoV-2 vaccines strategies: a comprehensive review of phase 3 candidates. NPJ Vaccines. 2021;6:28.
  • 7. Connors M, Graham BS, Lane HC, Fauci AS. SARS-CoV-2 Vaccines: Much Accomplished, Much to Learn. Ann Intern Med. 2021;174:687-90.
  • 8. Bian L, Gao F, Zhang J, He Q, Mao Q, Xu M, et al. Effects of SARS-CoV-2 variants on vaccine efficacy and response strategies. Expert Rev Vaccines. 2021;20:365-73.
  • 9. Shang Y, Pan C, Yang X, Zhong M, Shang X, Wu Z, et al. Management of critically ill patients with COVID-19 in ICU: statement from front-line intensive care experts in Wuhan, China. Ann Intensive Care. 2020;10:73.
  • 10. Varatharaj A, Thomas N, Ellul MA, Davies NWS, Pollak TA, Tenorio EL, et al. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: a UK-wide surveillance study. Lancet Psychiatry. 2020;7:875-82.
  • 11. Prasad K, AlOmar SY, Alqahtani SAM, Malik MZ, Kumar V. Brain Disease Network Analysis to Elucidate the Neurological Manifestations of COVID-19. Mol Neurobiol. 2021;58:1875-93.
  • 12. Cevher C, Altunkaynak B, Gürü M. Impacts of COVID-19 on Agricultural Production Branches: An Investigation of Anxiety Disorders among Farmers. Sustainability. 2021;13:5186.
  • 13. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497-506.
  • 14. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239-42.
  • 15. Aydın DY, Gürü M, Gürü S. Effect of Alkaloids on SARS-CoV-2. Naturengs Covid-19 Special Issue. 2020:10-8.
  • 16. High KP. Nutritional strategies to boost immunity and prevent infection in elderly individuals. Clin Infect Dis. 2001;33:1892-900.
  • 17. Simpson RJ, Kunz H, Agha N, Graff R. Exercise and the Regulation of Immune Functions. Prog Mol Biol Transl Sci. 2015;135:355-80.
  • 18. WHO Global Report on Traditional and Complementary Medicine 2019. World Health Organization;2019.
  • 19. Hartmann T. The lost origin of chemical ecology in the late 19th century. Proc Natl Acad Sci U S A. 2008;105:4541-46.
  • 20. Yang L, Wen KS, Ruan X, Zhao YX, Wei F, Wang Q. Response of Plant Secondary Metabolites to Environmental Factors. Molecules. 2018;23:762.
  • 21. Rungsung W, Ratha KK, Dutta S, Dixit AK, Hazra J. Secondary Metabolites of plants in drugs discovery. W J Phar Res. 2015;4:604-13.
  • 22. Kim DW, Seo KH, Curtis-Long MJ, Oh KY, Oh JW, Cho JK, et al. Phenolic phytochemical displaying SARS-CoV papain-like protease inhibition from the seeds of Psoralea corylifolia, J Enzyme Inhib Med Chem. 2014;29:59-63.
  • 23. Reichling J, Neuner A, Sharaf M, Harkenthal M, Schnitzler P. Antiviral activity of Rhus aromatica (fragrant sumac) extract against two types of herpes simplex viruses in cell culture. Pharmazie. 2009;64:538-41.
  • 24. Zhou B, Yang Z, Feng Q, Liang X, Li J, Zanin M, et al. Aurantiamide acetate from baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-κB signaling pathway in Influenza A virus infected cells. J Ethnopharmacol. 2017;199:60-7.
  • 25. Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, et al. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem. 2016;31:23-30.
  • 26. Subbaiyan A, Ravichandran K, Singh SV, Sankar M, Thomas P, Dhama K, et al. In silico molecular docking analysis targeting SARS-CoV-2 spike protein and selected herbal constituents. J Pure Appl Microbiol. 2020;14(Suppl 1):989-98.
  • 27. Nivetha R, Bhuvaragavan S, Muthu Kumar T, Ramanathan K, Janarthanan S. Inhibition of multiple SARS-CoV-2 proteins by an antiviral biomolecule, seselin from Aegle marmelos deciphered using molecular docking analysis. J Biomol Struct Dyn. 2021:1-12.
  • 28. Basu A, Sarkar A, Maulik U. Computational approach for the design of potential spike protein binding natural compounds in SARS- CoV-2. Res. Sq. 2020;1-22.
  • 29. Krishnasamy R, Anand T, Baba M, Bharath MV, Phuntsho J, Arunachalam D, et al. In silico analysis of active compounds from siddha herbal infusion of Ammaiyar Koondhal Kudineer (Akk) against SARS-CoV- 2 spike protein and its ACE2 receptor complex. SSRN Online J. 2020;1-47. Preprint
  • 30. Naik SR, Bharadwaj P, Dingelstad N, Kalyaanamoorthy S, Mandal SC, Ganesan A, et al. Structure-based virtual screening, molecular dynamics and binding affinity calculations of some potential phytocompounds against SARS-CoV-2. J Biomol Struct Dyn. 2021:1-18.
  • 31. Agati G, Azzarello E, Pollastri S, Tattini M. Flavonoids as antioxidants in plants: location and functional significance. Plant Sci. 2012;196:67-76.
  • 32. Lattanzio V, Phenolic Compounds: Introduction. In: Ramawat K., Mérillon JM. (eds) Natural Products. Berlin, Heidelberg: Springer; 2013.
  • 33. De Pascual-Teresa S, Sanchez-Moreno C, Granado F, Olmedilla B, De Ancos B, Cano M.P. Short and mid-term bioavailability of flavanones from oranges in humans. Curr Top Nutraceut R. 2007;5:129-34.
  • 34. Viskupicova J, Ondrejovic M, Sturdik E. Bioavailability and metabolism of flavonoids. J Food Nutr Res. 2008;47:151-62.
  • 35. Cassidy L, Fernandez F, Johnson JB, Naiker M, Owoola AG, Broszczak DA. Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement Ther Med. 2020;49:102294.
  • 36. Khan H, Sureda A, Belwal T, Çetinkaya S, Süntar İ, Tejada S, et al. Polyphenols in the treatment of autoimmune diseases. Autoimmun Rev. 2019;18:647- 57.
  • 37. Tekin İÖ, Marotta F. Polyphenols and Immune System. Ronald Ross Watson, Victor R. Preedy, Sherma Zibadi (eds.) Polyphenols: Prevention and Treatment of Human Disease. Academic Press. 2018;263-76.
  • 38. Iddir M, Brito A, Dingeo G, Fernandez Del Campo SS, Samouda H, La Frano MR, et al. Strengthening the Immune System and Reducing Inflammation and Oxidative Stress through Diet and Nutrition: Considerations during the COVID-19 Crisis. Nutrients. 2020;12:1562.
  • 39. Ding S, Jiang H, Fang J. Regulation of Immune Function by Polyphenols. J Immunol Res. 2018;2018:1264074.
  • 40. Chiow KH, Phoon MC, Putti T, Tan BK, Chow VT. Evaluation of antiviral activities of Houttuynia cordata Thunb. extract, quercetin, quercetrin and cinanserin on murine coronavirus and dengue virus infection. Asian Pac J Trop Med. 2016;9:1-7.
  • 41. Yu MS, Lee J, Lee JM, Kim Y, Chin YW, Jee JG, et al. Identification of myricetin and scutellarein as novel chemical inhibitors of the SARS coronavirus helicase, nsP13. Bioorg Med Chem Lett. 2012;22:4049-54.
  • 42. Ryu YB, Jeong HJ, Kim JH, Kim YM, Park JY, Kim D, et al. Biflavonoids from Torreya nucifera displaying SARS-CoV 3CL(pro) inhibition. Bioorg Med Chem. 2010;18:7940-7.
  • 43. Wahedi HM, Ahmad S, Abbasi SW. Stilbene-based natural compounds as promising drug candidates against COVID-19. J Biomol Struct Dyn. 2021;39:3225-34.
  • 44. Yang ZF, Bai LP, Huang WB, Li XZ, Zhao SS, Zhong NS, et al. Comparison of in vitro antiviral activity of tea polyphenols against influenza A and B viruses and structure-activity relationship analysis. Fitoterapia. 2014;93:47-53.
  • 45. Chowdhury P, Sahuc ME, Rouillé Y, Rivière C, Bonneau N, Vandeputte A, et al. Theaflavins, polyphenols of black tea, inhibit entry of hepatitis C virus in cell culture. PLoS One. 2018;13:e0198226.
  • 46. Lung J, Lin YS, Yang YH, Chou YL, Shu LH, Cheng YC, et al. The potential chemical structure of anti-SARS-CoV-2 RNA-dependent RNA polymerase. J Med Virol. 2020;92:693-7.
  • 47. Gastaminza P, Pitram SM, Dreux M, Krasnova LB, Whitten-Bauer C, Dong J, et al. Antiviral stilbene 1,2-diamines prevent initiation of hepatitis C virus RNA replication at the outset of infection. J Virol. 2011;85:5513-23.
  • 48. Krawczyk H. The stilbene derivatives, nucleosides, and nucleosides modified by stilbene derivatives. Bioorg Chem. 2019;90:103073.
  • 49. Zhang X, Xu A, Lv J, Zhang Q, Ran Y, Wei C, et al. Development of small molecule inhibitors targeting NLRP3 inflammasome pathway for inflammatory diseases. Eur J Med Chem. 2020;185:111822.
  • 50. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome. Front Microbiol. 2019;10:50.
  • 51. Zhang G, Zhang B, Zhang X, Bing F. Homonojirimycin, an alkaloid from dayflower inhibits the growth of influenza A virus in vitro. Acta Virol. 2013;57:85-6.
  • 52. Yamagata K, Hashiguchi K, Yamamoto H, Tagami M. Dietary Apigenin Reduces Induction of LOX-1 and NLRP3 Expression, Leukocyte Adhesion, and Acetylated Low-Density Lipoprotein Uptake in Human Endothelial Cells Exposed to Trimethylamine-N-Oxide. J Cardiovasc Pharmacol. 2019;74:558- 65.
  • 53. Choe JY, Kim SK. Quercetin and Ascorbic Acid Suppress Fructose-Induced NLRP3 Inflammasome Activation by Blocking Intracellular Shuttling of TXNIP in Human Macrophage Cell Lines. Inflammation. 2017;40:980-94.
  • 54. Lim H, Min DS, Park H, Kim HP. Flavonoids interfere with NLRP3 inflammasome activation. Toxicol Appl Pharmacol. 2018;355:93-102.
  • 55. Fu S, Xu L, Li S, Qiu Y, Liu Y, Wu Z, et al. Baicalin suppresses NLRP3 inflammasome and nuclear factor-kappa B (NF-κB) signaling during Haemophilus parasuis infection. Vet Res. 2016;47:80.
  • 56. Sun Y, Zhao Y, Yao J, Zhao L, Wu Z, Wang Y, et al. Wogonoside protects against dextran sulfate sodium-induced experimental colitis in mice by inhibiting NF-κB and NLRP3 inflammasome activation. Biochem Pharmacol. 2015;94:142-54.
  • 57. Dai W, Bi J, Li F, Wang S, Huang X, Meng X, et al. Antiviral Efficacy of Flavonoids against Enterovirus 71 Infection in Vitro and in Newborn Mice. Viruses. 2019;11:625.
  • 58. Manvar D, Mishra M, Kumar S, Pandey VN. Identification and evaluation of anti hepatitis C virus phytochemicals from Eclipta alba. J Ethnopharmacol. 2012;144:545-54.
  • 59. Visintini Jaime MF, Redko F, Muschietti LV, Campos RH, Martino VS, Cavallaro LV. In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol J. 2013;10:245.
  • 60. Chiang LC, Ng LT, Cheng PW, Chiang W, Lin CC. Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clin Exp Pharmacol Physiol. 2005;32:811-6.
  • 61. Ho TY, Wu SL, Chen JC, Li CC, Hsiang CY. Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 2007;74:92-101.
  • 62. Lin SC, Ho CT, Chuo WH, Li S, Wang TT, Lin CC. Effective inhibition of MERS CoV infection by resveratrol. BMC Infect Dis. 2017;17:144.
  • 63. Seo DJ, Jeon SB, Oh H, Lee B-H, Lee S-Y, Oh SH, et al. Comparison of the antiviral activity of flavonoids against murine norovirus and feline calicivirus. Food Control. 2016;60:25-30.
  • 64. Ha SY, Youn H, Song CS, Kang SC, Bae JJ, Kim HT, et al. Antiviral effect of flavonol glycosides isolated from the leaf of Zanthoxylum piperitum on influenza virus. J Microbiol. 2014;52:340-4.
  • 65. Lee S, Lee HH, Shin YS, Kang H, Cho H. The anti-HSV-1 effect of quercetin is dependent on the suppression of TLR-3 in Raw 264.7 cells. Arch Pharm Res. 2017;40:623-30.
  • 66. Wu W, Li R, Li X, He J, Jiang S, Liu S, et al. Quercetin as an Antiviral Agent Inhibits Influenza A Virus (IAV) Entry. Viruses. 2015;8:6.
  • 67. Cheng Z, Sun G, Guo W, Huang Y, Sun W, Zhao F, et al. Inhibition of hepatitis B virus replication by quercetin in human hepatoma cell lines. Virol Sin. 2015;30:261-8.
  • 68. Liu Z, Zhao J, Li W, Shen L, Huang S, Tang J, et al. Computational screen and experimental validation of anti-influenza effects of quercetin and chlorogenic acid from traditional Chinese medicine. Sci Rep. 2016;6:19095.
  • 69. Liu Z, Zhao J, Li W, Wang X, Xu J, Xie J, et al. Molecular docking of potential inhibitors for influenza H7N9. Comput Math Methods Med. 2015;2015:480764.
  • 70. Rathinavel T, Meganathan B, Kumarasamy S, Ammashi S, Thangaswamy S, Ragunathan Y, et al. Potential COVID-19 drug from natural phenolic compounds through in silico virtual screening approach. Biointerface Res Appl Chem. 2021;11:10161-73.
  • 71. Blank DE, Corrêa RA, Freitag RA, Cleff MB, Hübner SO. Anti-equine arteritis virus activity of ethanolic extract and compounds from Origanum vulgare. HübnerSemina: Ciências Agrárias, Londrina. 2017;38:759-64.
  • 72. Liu H, Ye F, Sun Q, Liang H, Li C, Li S, et al. Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. J Enzyme Inhib Med Chem. 2021;36:497-503.
  • 73. Park JY, Yuk HJ, Ryu HW, Lim SH, Kim KS, Park KH, et al. Evaluation of polyphenols from Broussonetia papyrifera as coronavirus protease inhibitors. J Enzyme Inhib Med Chem. 2017;32:504-15.
  • 74. Ortega JT, Serrano ML, Suárez AI, Baptista J, Pujol FH, Cavallaro LV, et al. Antiviral activity of flavonoids present in aerial parts of Marcetia taxifolia against Hepatitis B virus, Poliovirus, and Herpes Simplex Virus in vitro. EXCLI J. 2019;18:1037-48.
  • 75. Medini F, Megdiche W, Mshvildadze V, Pichette A, Legault J, St-Gelais A, et al. Antiviral-guided fractionation and isolation of phenolic compounds from Limonium densiflorum hydroalcoholic extract. CR CHIM. 2016;19:726-32.
  • 76. Abd El-Mordy FM, El-Hamouly MM, Ibrahim MT, El-Rheem GA, Aly OM, Abd El-Kader AM, et al. Inhibition of SARS-CoV-2 main protease by phenolic compounds from Manilkara hexandra (Roxb.) Dubard assisted by metabolite profiling and in silico virtual screening. RSC Adv. 2020;10:32148-55.
  • 77. Hassan HA, Abdelmohsen UR, Aly OM, Desoukey SY, Mohamed KM, Kamel MS. Potential of Ficus microcarpa metabolites against SARS-CoV-2 main protease supported by docking studies. Nat Prod Res. 2022;36:994-8.
  • 78. Yi L, Li Z, Yuan K, Qu X, Chen J, Wang G, et al. Small molecules blocking the entry of severe acute respiratory syndrome coronavirus into host cells. J Virol. 2004;78:11334-9.
  • 79. Pandey P, Rane JS, Chatterjee A, Kumar A, Khan R, Prakash A, et al. Targeting SARS-CoV-2 spike protein of COVID-19 with naturally occurring phytochemicals: an in silico study for drug development. J Biomol Struct Dyn. 2021;39:6306-16.
  • 80. Liu X, Raghuvanshi R, Ceylan FD, Bolling BW. Quercetin and Its Metabolites Inhibit Recombinant Human Angiotensin-Converting Enzyme 2 (ACE2) Activity. J Agric Food Chem. 2020;68:13982-9.
  • 81. Horne JR, Vohl MC. Biological plausibility for interactions between dietary fat, resveratrol, ACE2, and SARS-CoV illness severity. Am J Physiol Endocrinol Metab. 2020;318:E830-3.
  • 82. Perveen S, Al-Taweel A. Introductory chapter: Terpenes and terpenoids. In terpenes and terpenoids; IntechOpen: London, UK, 2018.
  • 83. Muhseen ZT, Li G. Promising Terpenes as Natural Antagonists of Cancer: An In-Silico Approach. Molecules. 2019;25:155.
  • 84. Raphael TJ, Kuttan G. Effect of naturally occurring triterpenoids glycyrrhizic acid, ursolic acid, oleanolic acid and nomilin on the immune system. Phytomedicine. 2003;10:483-9.
  • 85. Soubh AA, Abdallah DM, El-Abhar HS. Geraniol ameliorates TNBS-induced colitis: Involvement of Wnt/β-catenin, p38MAPK, NFκB, and PPARγ signaling pathways. Life Sci. 2015;136:142-50.
  • 86. d’Alessio PA, Ostan R, Bisson JF, Schulzke JD, Ursini MV, Béné MC. Oral administration of d-limonene controls inflammation in rat colitis and displays anti-inflammatory properties as diet supplementation in humans. Life Sci. 2013;92:1151-6.
  • 87. de las Heras B, Hortelano S. Molecular basis of the anti-inflammatory effects of terpenoids. Inflamm Allergy Drug Targets. 2009;8:28-39.
  • 88. Zhang Y, Jiang P, Ye M, Kim SH, Jiang C, Lü J. Tanshinones: sources, pharmacokinetics and anti-cancer activities. Int J Mol Sci. 2012;13:13621- 66.
  • 89. Carvalho AMS, Heimfarth L, Santos KA, Guimarães AG, Picot L, Almeida JGRS, et. al. Terpenes as possible drugs for the mitigation of arthritic symptoms – A systematic review, Phytomedicine. 2019;57:137-47.
  • 90. Chen L, Lan Z, Ma S, Zhao L, Yang X. Attenuation of gouty arthritis by emodinol in monosodium urate crystal-treated mice. Planta Med. 2013;79:634-8.
  • 91. Luo P, Liu D, Li J. Pharmacological perspective: glycyrrhizin may be an efficacious therapeutic agent for COVID-19. Int J Antimicrob Agents. 2020;55:105995.
  • 92. Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H, Doerr HW. Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 2003;361:2045-6.
  • 93. Sato H, Goto W, Yamamura J, Kurokawa M, Kageyama S, Takahara T, et al. Therapeutic basis of glycyrrhizin on chronic hepatitis B. Antiviral Res. 1996;30:171-7.
  • 94. Ito M, Sato A, Hirabayashi K, Tanabe F, Shigeta S, Baba M, et al. Mechanism of inhibitory effect of glycyrrhizin on replication of human immunodeficiency virus (HIV). Antiviral Res. 1988;10:289-98.
  • 95. Muhseen ZT, Hameed AR, Al-Hasani HMH, Tahir Ul Qamar M, Li G. Promising terpenes as SARS-CoV-2 spike receptor-binding domain (RBD) attachment inhibitors to the human ACE2 receptor: Integrated computational approach. J Mol Liq. 2020;320:114493.
  • 96. Yang Z, Wu N, Fu Y, Yang G, Wang W, Zu Y, et al. Anti-infectious bronchitis virus (IBV) activity of 1,8-cineole: effect on nucleocapsid (N) protein. J Biomol Struct Dyn. 2010;28:323-30.
  • 97. Yang Z, Wu N, Zu Y, Fu Y. Comparative anti-infectious bronchitis virus (IBV) activity of (-)-pinene: effect on nucleocapsid (N) protein. Molecules. 2011;16:1044-54.
  • 98. Lin LT, Chung CY, Hsu WC, Chang SP, Hung TC, Shields J, et al. Saikosaponin b2 is a naturally occurring terpenoid that efficiently inhibits hepatitis C virus entry. J Hepatol. 2015;62:541-8.
  • 99. Cheng PW, Ng LT, Chiang LC, Lin CC. Antiviral effects of saikosaponins on human coronavirus 229E in vitro. Clin Exp Pharmacol Physiol. 2006;33:612- 6.
  • 100. Li C, Huang L, Sun W. Chen Y, He ML, Yue J, et al. Saikosaponin D suppresses enterovirus A71 infection by inhibiting autophagy. Sig Transduct Target Ther. 2019;4:4.
  • 101. Shaghaghi N. Molecular Docking Study of Novel COVID-19 Protease with Low Risk Terpenoides Compounds of Plants. ChemRxiv. Preprint. 2020.
  • 102. Armaka M, Papanikolaou E, Sivropoulou A, Arsenakis M. Antiviral properties of isoborneol, a potent inhibitor of herpes simplex virus type 1. Antiviral Res. 1999;43:79-92.
  • 103. Senthil Kumar KJ, Gokila Vani M, Wang CS, Chen CC, Chen YC, Lu LP, et al. Geranium and Lemon Essential Oils and Their Active Compounds Downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS CoV-2 Spike Receptor-Binding Domain, in Epithelial Cells. Plants (Basel). 2020;9:770.
  • 104. Fayyad AG, Ibrahim N, Yaakob WA. Phytochemical screening and antiviral activity of Marrubium vulgare. Malays J Microbiol. 2014;10:106-11.
  • 105. Cheng HY, Lin TC, Yang CM, Wang KC, Lin LT, Lin CC. Putranjivain A from Euphorbia jolkini inhibits both virus entry and late stage replication of herpes simplex virus type 2 in vitro. J Antimicrob Chemother. 2004;53:577-83.
  • 106. Kurokawa M, Basnet P, Ohsugi M, Hozumi T, Kadota S, Namba T, et al. Anti herpes simplex virus activity of moronic acid purified from Rhus javanica in vitro and in vivo. J Pharmacol Exp Ther. 1999;289:72-8.
  • 107. Wintachai P, Kaur P, Lee RC, Ramphan S, Kuadkitkan A, Wikan N, et al. Activity of andrographolide against chikungunya virus infection. Sci Rep. 2015;5:14179.
  • 108. Fujioka T, Kashiwada Y, Kilkuskie RE, Cosentino LM, Ballas LM, Jiang JB, et al. Anti-AIDS agents, 11. Betulinic acid and platanic acid as anti HIV principles from Syzigium claviflorum, and the anti-HIV activity of structurally related triterpenoids. J Nat Prod. 1994;57:243-7.
  • 109. Zhu YM, Shen JK, Wang HK, Cosentino LM, Lee KH. Synthesis and anti-HIV activity of oleanolic acid derivatives. Bioorg Med Chem Lett. 2001;11:3115-8.
  • 110. Park JY, Kim JH, Kim YM, Jeong HJ, Kim DW, Park KH, et al. Tanshinones as selective and slow-binding inhibitors for SARS-CoV cysteine proteases. Bioorg Med Chem. 2012;20:5928-35.
  • 111. Diniz LRL, Perez-Castillo Y, Elshabrawy HA, Filho CDSMB, de Sousa DP. Bioactive Terpenes and Their Derivatives as Potential SARS-CoV-2 Proteases Inhibitors from Molecular Modeling Studies. Biomolecules. 2021;11:74.
  • 112. Quy PT, My TTA, Bui TQ, Loan HTP, Van Anh T, Triet NT, et al. Molecular docking prediction of carvone and trans-geraniol inhibitability towards SARS-CoV-2. VJCH. 2021;59:457-66.
  • 113. Chiang LC, Ng LT, Liu LT, Shieh DE, Lin CC. Cytotoxicity and anti-hepatitis B virus activities of saikosaponins from Bupleurum species. Planta Med. 2003;69:705-9.
  • 114. Yao D, Li H, Gou Y, Zhang H, Vlessidis AG, Zhou H, et al. Betulinic acid mediated inhibitory effect on hepatitis B virus by suppression of manganese superoxide dismutase expression. FEBS J. 2009;276:2599-614.
  • 115. Ryu YB, Park SJ, Kim YM, Lee JY, Seo WD, Chang JS, et al. SARS-CoV 3CLpro inhibitory effects of quinone-methide triterpenes from Tripterygium regelii. Bioorg Med Chem Lett. 2010;20:1873-6.
  • 116. Tseng CK, Hsu SP, Lin CK, Wu YH, Lee JC, Young KC. Celastrol inhibits hepatitis C virus replication by upregulating heme oxygenase-1 via the JNK MAPK/Nrf2 pathway in human hepatoma cells. Antiviral Res. 2017;146:191-200.
  • 117. Hank K. Can SARS-CoV-2 viral load and COVID-19 disease severity be reduced by resveratrol-assisted zinc therapy (reszinate). 2020. Identifier NCT04542993. Available from: https://clinicaltrials.gov/ct2/show/record/ NCT04542993
  • 118. Elard K. Previfenon® as Chemoprophylaxis of COVID-19 in Health Workers (HERD). 2020. Identifier NCT04446065. Available from: https://clinicaltrials. gov/ct2/show/study/NCT04446065
  • 119. Ayub Teaching Hospital. Dietary Supplements Vit D, Quercetin and Curcumin Combination for Early Symptoms of COVID-19. 2021. Identifier NCT05008003. Available from: https://www.clinicaltrials. gov/ct2/show/NCT05008003?term=quercetin&cond=SARS CoV2+Infection&draw=2&rank=6
  • 120. Hôpital Universitaire Sahloul. The Effectiveness of Phytotherapy in SARS COV2(COVID-19) (Quercetix). 2021. Identifier NCT04851821. Available from: https://www.clinicaltrials.gov/ct2/show/NCT04851821?term=querce tin&cond=SARS-CoV2+Infection&draw=2&rank=7
  • 121. Khalil AAK. The Study of Quadruple Therapy Zinc, Quercetin, Bromelain and Vitamin C on the Clinical Outcomes of Patients Infected With COVID-19. 2020. Identifier NCT04468139. Available from: https://www. clinicaltrials.gov/ct2/show/study/NCT04468139?term=quercetin&cond=S ARS-CoV2+Infection&draw=2&rank=5
Namık Kemal Tıp Dergisi-Cover
  • ISSN: 2587-0262
  • Başlangıç: 2013
  • Yayıncı: Erkan Mor
Sayıdaki Diğer Makaleler

Periton Diyalizi Hastalarında, Rezidüel Renal Fonksiyonların Kaybı Boylamsal Ürik Asit ve CRP Düzeyleri ile İlişkili midir?

Aygül ÇELTİK, Zalal ALATAŞ, Mümtaz YILMAZ, Meltem SEZİŞ DEMİRCİ, Gülay AŞÇI, Hüseyin TÖZ, Mehmet ÖZKAHYA

Bir Eğitim ve Araştırma Hastanesi Çocuk Kliniklerinde Alınan Kültür Sonuçlarının Değerlendirilmesi

Nurşen CİĞERCİ GÜNAYDIN, Birsen DURMAZ ÇETİN, Banu BAYRAKTAR, Feyzullah ÇETİNKAYA

Vajenden Soyutlanan Candida Türlerinde Biyofilm Üretiminin İki Farklı Yöntemle Araştırılması

Aydın AYDINLI, Gürcan VURAL

SARS-CoV-2’ye Karşı Doğal Terapötiklerin Potansiyeli: Fenolik Bileşikler ve Terpenler

Duygu YILMAZ AYDIN, Selahattin GÜRÜ

İyatrojenik Koroner Arter Diseksiyonu: Erken Müdahale mi Geç Müdahale mi?

Gökay TAYLAN, Fethi Emre USTABAŞIOĞLU, Kenan YALTA

Koroner Stent Uygulanan ST Elevasyonsuz Miyokard İnfarktüsünde Pentraksin-3’ün Uzun Vadeli Prognostik Önemi

Uğur KÜÇÜK, Bahadır KIRILMAZ, Ertuğrul ERCAN

Bariatrik Cerrahi Sonrası Viseral Organ Yağ İnfiltrasyon Değişikliklerini İzlemenin Etkili Yöntemi: İdeal IQ Sekansı

Yavuz METİN, Nurgül Orhan METİN, Süleyman KALCAN, Muhammed Kadri ÇOLAKOĞLU, Filiz TAŞÇI, Oğuzhan ÖZDEMİR, Ali KÜPELİ

Serebral Palsili Pediatrik Hastalarda Femoral Anteversiyon ve Femur Boyun-Şaft Açılarının Değerlendirilmesi ve Literatürün Tekrar Değerlendirilmesi

Mehmet ALBAYRAK, Gazi ZORER

Revised Urinary Incontinence Scale’in Türkçe Geçerlilik ve Güvenilirlik Çalışması

Sefa Alperen ÖZTÜRK, Osman ERGÜN, Sabriye ERCAN

Wistar Albino Sıçanlarda Sisplatin ile Oluşan Böbrek Hasarında Kuersetinin Etkileri

Dilan ÇETİNAVCI, Hülya ELBE, Elif TAŞLIDERE, NURAY BOSTANCIERİ, Aslı TAŞLIDERE