Kışlık yağlı tohumlu bitki olan Kanolaya (Brassica napus L.) genel bir bakış

Kanola bitkisel yağı, biyoyakıt ve hayvan yemi üretimi açısından önemli bir ekonomik değere sahiptir ve dünyada 53 ülkede yetiştirilmektedir. Kanola, düşük oranda doymuş yağ asidi, yüksek oranlarda tekli doymamış yağ asitleri ve iyi oranda omega-3 içerir. 2011 yılı hasat sezonu için Avustralya kanolasının ortalama yağ içeriği %44 olmuştur. Ham kanola yağı, kullanılabilir bir gıda ürününe dönüştürmek için istenmeyen minör bileşikleri uzaklaştırmak için rafine edilir. Ancak rafinasyon işlemi yağda arzu edilen, sağlığı geliştiren küçük bileşenlerin kaybına neden olabilmektedir. Kanola yağı ekstraksiyonunun yan ürünü olan küspesi protein açısından zengindir. Kanola, ağırlıklı olarak Avrupa’da kışlık, Asya'da ise yarı kışlık bir ürün olarak yetiştirilmektedir. İlkbahar ekimi Kanada, Avustralya ve kuzey Avrupa koşullarına daha fazla uyum sağlamıştır. Kanola, dünyanın çoğu yerinde bir kuru tarım mahsulüdür ve küresel iklim değişimi nedeniyle tür, önemli abiyotik strese maruz kalmaktadır. Buna rağmen kışlık bir tür olduğundan, yazın yetiştirilen birçok yağlı tohumlu türe kıyasla, iklim değişimi koşullarına daha dayanıklı bir tür olarak gelecekte daha da öne çıkması beklenmektedir. Kanola, ağırlıklı olarak Avrupa’da kışlık ve Asya'da yarı kışlık bir ürün olarak yetiştirilmektedir. İlkbahar ekimi Kanada, Avustralya ve kuzey Avrupa koşullarına daha fazla uyum sağlamıştır. Kanola, dünyanın çoğu yerinde bir kuru tarım mahsulüdür ve küresel iklim değişimi nedeniyle tür, önemli abiyotik strese maruz kalmaktadır. Buna rağmen kışlık bir tür olduğundan, yazın yetiştirilen birçok yağlı tohumlu türe kıyasla, iklim değişimi koşullarına daha dayanıklı bir tür olarak gelecekte daha da öne çıkması beklenmektedir.
Anahtar Kelimeler:

kolza, Brassica napus, Kanola

An overview of Canola (Brassica napus L.), a winter oilseed plant

Canola has an important economic value in terms of vegetable oil, biofuel and animal feed production and is grown in 53 countries around the world. Canola contains low levels of saturated fatty acids, high levels of monounsaturated fatty acids and good levels of omega-3s. The average oil content of Australian canola for the 2011 harvest season was 44% in average. Crude canola oil is refined to remove unwanted minor compounds to convert the oil into an edible food product. But refining can cause the loss of desirable, health-promoting minor components from the oil as a side effect. The by-product of canola oil extraction is a valuable protein-rich meal. Canola is grown mainly as a winter crop in Europe and a semi-winter crop in Asia. Its cultivation in the spring is more adapted to the conditions of Canada, Australia and northern Europe. Canola is a dry-farm crop in most parts of the world, and due to global climate change, the species is subject to significant abiotic stress. However, since it is a winter species, it is expected to become more prominent in the future as a more resistant species to climate change conditions compared to many summer grown oilseed species

___

  • Banaei-Asl, F., Bandehagh, A., Uliaei, E. D., Farajzadeh, D., Sakata, K., Mustafa, G., & Komatsu, S. (2015). Proteomic analysis of canola root inoculated with bacteria under salt stress. Journal of Proteomics, 124, 88-111. https://doi.org/10.1016/j.jprot.2015.04.009
  • Bandehagh, A., Salekdeh, G. H., Toorchi, M., Mohammadi, A., & Komatsu, S. (2011). Comparative proteomic analysis of canola leaves under salinity stress. Proteomics, 11(10), 1965-1975. https://doi.org/10.1002/pmic.201000564
  • Beszterda, M., & Nogala‐Kałucka, M. (2019). Current research developments on the processing and improvement of the nutritional quality of rapeseed (Brassica napus L.). European Journal of Lipid Science and Technology, 121(5), 1800045. https://doi.org/10.1002/ejlt.201800045
  • Dreccer, M. F., Fainges, J., Whish, J., Ogbonnaya, F. C., & Sadras, V. O. (2018). Comparison of sensitive stages of wheat, barley, canola, chickpea and field pea to temperature and water stress across Australia. Agricultural and Forest Meteorology, 248, 275-294. https://doi.org/10.1016/j.agrformet.2017.10.006
  • Elahi, N., Duncan, R. W., & Stasolla, C. (2015). Decreased seed oil production in FUSCA3 Brassica napus mutant plants. Plant Physiology and Biochemistry, 96, 222-230. https://doi.org/10.1016/j.plaphy.2015.08.002
  • FAOSTAT. (2021). Retrieved on May 20, 2022, from http://www.fao.org/faostat/en/#data/QCL
  • Farina, R., Beneduzi, A., Ambrosini, A., de Campos, S. B., Lisboa, B. B., Wendisch, V., & Passaglia, L. M. (2012). Diversity of plant growth-promoting rhizobacteria communities associated with the stages of canola growth. Applied Soil Ecology, 55, 44-52. https://doi.org/10.1016/j.apsoil.2011.12.011
  • Gaber, M. A. F. M., Tujillo, F. J., Mansour, M. P., & Juliano, P. (2018). Improving oil extraction from canola seeds by conventional and advanced methods. Food Engineering Reviews, 10(4), 198-210. https://doi.org/10.1007/s12393-018-9182-1
  • Ghazani, S. M., & Marangoni, A. G. (2013). Minor components in canola oil and effects of refining on these constituents: A review. Journal of the American Oil Chemists' Society, 90(7), 923-932. https://doi.org/10.1007/s11746-013-2254-8
  • Grewal, H. S. (2010). Water uptake, water use efficiency, plant growth and ionic balance of wheat, barley, canola and chickpea plants on a sodic vertosol with variable subsoil NaCl salinity. Agricultural Water Management, 97(1), 148-156. https://doi.org/10.1016/j.agwat.2009.09.002
  • Hannoufa, A., Pillai, B. V., & Chellamma, S. (2014). Genetic enhancement of Brassica napus seed quality. Transgenic Research, 23(1), 39-52. https://doi.org/10.1007/s11248-013-9742-3
  • Huang, R., Liu, Z., Xing, M., Yang, Y., Wu, X., Liu, H., & Liang, W. (2019). Heat stress suppresses Brassica napus seed oil accumulation by inhibition of photosynthesis and BnWRI1 pathway. Plant and Cell Physiology, 60(7), 1457-1470. https://doi.org/10.1093/pcp/pcz052
  • Jiang, J., Zhu, S., Yuan, Y., Wang, Y., Zeng, L., Batley, J., & Wang, Y. P. (2019). Transcriptomic comparison between developing seeds of yellow-and black-seeded Brassica napus reveals that genes influence seed quality. BMC Plant Biology, 19(1), 1-14. https://doi.org/10.1186/s12870-019-1821-z
  • Keshavarz, H. (2020). Study of water deficit conditions and beneficial microbes on the oil quality and agronomic traits of canola (Brassica napus L.). Grasas Y Aceites, 71(3), 373. https://doi.org/10.3989/gya.0572191
  • Li, H., Lei, P., Pang, X., Li, S., Xu, H., Xu, Z., & Feng, X. (2017). Enhanced tolerance to salt stress in canola (Brassica napus L.) seedlings inoculated with the halotolerant Enterobacter cloacae HSNJ4. Applied Soil Ecology, 119, 26-34. https://doi.org/10.1016/j.apsoil.2017.05.033
  • Lilley, J. M., Flohr, B. M., Whish, J. P., Farre, I., & Kirkegaard, J. A. (2019). Defining optimal sowing and flowering periods for canola in Australia. Field Crops Research, 235, 118-128. https://doi.org/10.1016/j.fcr.2019.03.002 Lohani, N., Jain, D., Singh, M. B., & Bhalla, P. L. (2020). Engineering multiple abiotic stress tolerance in canola, Brassica napus. Frontiers in Plant Science, 11, 3. https://doi.org/10.3389/fpls.2020.00003
  • Maheshwari, P., Selvaraj, G., & Kovalchuk, I. (2011). Optimization of Brassica napus (canola) explant regeneration for genetic transformation. New Biotechnology, 29(1), 144-155. https://doi.org/10.1016/j.nbt.2011.06.014
  • Manaf, A., Kashif, M., Sher, A., Qayyum, A., Sattar, A., & Hussain, S. (2019). Boron nutrition for improving the quality of diverse canola cultivars. Journal of Plant Nutrition, 42(17), 2114-2120. https://doi.org/10.1080/01904167.2019.1648674
  • Maxin, G., Ouellet, D. R., & Lapierre, H. (2013). Ruminal degradability of dry matter, crude protein, and amino acids in soybean meal, canola meal, corn, and wheat dried distillers grains. Journal of Dairy Science, 96(8), 5151-5160. https://doi.org/10.3168/jds.2012-6392
  • Mohtashami, R., Dehnavi, M. M., Balouchi, H., & Faraji, H. (2020). Improving yield, oil content and water productivity of dryland canola by supplementary irrigation and selenium spraying. Agricultural Water Management, 232, 106046. https://doi.org/10.1016/j.agwat.2020.106046
  • Nath, U. K., Kim, H. T., Khatun, K., Park, J. I., Kang, K. K., & Nou, I. S. (2016). Modification of fatty acid profiles of rapeseed (Brassica napus L.) oil for using as food, industrial feed-stock and biodiesel. Plant Breeding and Biotechnology, 4(2), 123-134. https://doi.org/10.9787/PBB.2016.4.2.123
  • Page, E. R., Meloche, S., Moran, M., Caldbeck, B., & Barthet, V. (2021). Effect of seeding date on winter canola (Brassica napus L.) yield and oil quality in southern Ontario. Canadian Journal of Plant Science, 101(4), 490-499. https://doi.org/10.1139/cjps-2020-0220
  • Peng, G., McGregor, L., Lahlali, R., Gossen, B. D., Hwang, S. F., Adhikari, K. K., ... & McDonald, M. R. (2011). Potential biological control of clubroot on canola and crucifer vegetable crops. Plant Pathology, 60(3), 566-574. https://doi.org/10.1111/j.1365-3059.2010.02400.x
  • Qaderi, M. M., Kurepin, L. V., & Reid, D. M. (2012). Effects of temperature and watering regime on growth, gas exchange and abscisic acid content of canola (Brassica napus) seedlings. Environmental and Experimental Botany, 75, 107-113. https://doi.org/10.1016/j.envexpbot.2011.09.003
  • Schafer, M. G., Ross, A. A., Londo, J. P., Burdick, C. A., Lee, E. H., Travers, S. E., Van de Water, P. K., & Sagers, C. L. (2011). The establishment of genetically engineered canola populations in the US. PLoS One, 6(10), e25736. https://doi.org/10.1371/journal.pone.0025736
  • Seberry, D. E., McCaffery, D., & Kingham, T. M. (2014). Quality of Australian canola 2011-12. Australian Oilseed Federation.18, 1, 34.
  • Singh, L., Sharma, R., & Singh, N. (2021). Effect of Foliar Application of Sulphur and Integrated Nutrient Management on Yield, Quality and Economics of Bed Transplanted Canola (Brassica napus L.). Indian Journal of Agricultural Research, 55(2), 192-196.
  • Spasibionek, S., Mikołajczyk, K., Ćwiek–Kupczyńska, H., Piętka, T., Krótka, K., Matuszczak, M., Nowakowska, J., Michalski, K., & Bartkowiak-Broda, I. (2020). Marker assisted selection of new high oleic and low linolenic winter oilseed rape (Brassica napus L.) inbred lines revealing good agricultural value. PloS one, 15(6), e0233959. https://doi.org/10.1371/journal.pone.0233959
  • Tan, S. H., Mailer, R. J., Blanchard, C. L., & Agboola, S. O. (2011). Canola proteins for human consumption: extraction, profile, and functional properties. Journal of Food Science, 76(1), R16-R28. https://doi.org/10.1111/j.1750-3841.2010.01930.x
  • Tesfamariam, E. H., Annandale, J. G., & Steyn, J. M. (2010). Water stress effects on winter canola growth and yield. Agronomy Journal, 102(2), 658-666. https://doi.org/10.2134/agronj2008.0043
  • Wanasundara, J. P., McIntosh, T. C., Perera, S. P., Withana-Gamage, T. S., & Mitra, P. (2016). Canola/rapeseed protein-functionality and nutrition. OCl, 23(4), D407. https://doi.org/10.1051/ocl/2016028
  • Wu, W., & Ma, B. L. (2018). Assessment of canola crop lodging under elevated temperatures for adaptation to climate change. Agricultural and Forest Meteorology, 248, 329-338. https://doi.org/10.1016/j.agrformet.2017.09.017
  • Yang, Q., Fan, C., Guo, Z., Qin, J., Wu, J., Li, Q., Fu, T., & Zhou, Y. (2012). Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theoretical and Applied Genetics, 125(4), 715-729. https://doi.org/10.1007/s00122-012-1863-1
  • Zhang, J., Mason, A. S., Wu, J., Liu, S., Zhang, X., Luo, T., Redden, R., Batley, J., Hu, L., & Yan, G. (2015). Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Frontiers in Plant Science, 6, 1058. https://doi.org/10.3389/fpls.2015.01058
  • Zhang, X., Lian, J., Dai, C., Wang, X., Zhang, M., Su, X., ... & Yu, C. (2021). Genetic segregation analysis of unsaturated fatty acids content in the filial generations of high-linolenic-acid rapeseed (Brassica napus). Oil Crop Science, 6(4), 169-174. https://doi.org/10.1016/j.ocsci.2021.10.001