MOLARİTE VE ÇÖZÜCÜNÜN SIVI-KRİSTAL POLİMERİ F8T2’NİN OPTİK PARAMETRELERİ ÜZERİNDEKİ ETKİSİ ve F8T2 FİLMİNİN YÜZEY MORFOLOJİSİ ÖZELLİKLERİ

Bu çalışmada, yüksek verimli atomik kuvvet mikroskobu ile sıvı-kristal polimeri olan poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) filminin yüzey morfolojisini araştırdık ve F8T2 filminin pürüzlülük ortalaması (sa), kök-ortalama-kare sapması (sq), yüzey çarpıklığı (ssk) ve yüzek basıklığı (sku) değerleri gibi yüzey pürüzlülük parametrelerini elde ettik. Aynı zamanda, AFM ile F8T2 filminin kesiti (duvar) ve yükseklik histogramlarının morfolojisini de inceledik. F8T2 filminin pozitif çarpıklık ve yüksek basıklık değerleri, düşük sürtünme uygulamalarını sağlamak için istenilen bir durumdur. F8T2 filmi için sq’nun sa’ya oranları, 1.271 ve 1.292 olarak bulundu. Daha sonra, farklı molariteler ve çözücüler için, F8T2 polimerin solüsyonlarının optik özelliklerini detaylı bir şekilde araştırdık. F8T2 polimerinin absorbans, molar tükenme katsayısı (ε) ve kütle tükenme katsayısı (α) değerleri, molaritenin azalmasıyla azalmaktadır. F8T2 polimerinin, ortalama geçirgenlik, absorbans bant kenarı, doğrudan (Egd) ve dolaylı (Egid) enerji bandı değerleri molaritenin azalmasıyla artmaktadır. DCM, THF ve kloroform çözücüleri için F8T2 polimerinin maksimum absorbans dalga boyu (λmax) değerleri sırasıyla 447, 453 ve 455 nm olarak bulunurken, 1.200 ve 0.800 μM için F8T2’nin solüsyonlarının λmax değeri 455 nm olarak bulundu. F8T2 polimerinin sarı ışığı, 586 nm’de yayıldı. DCM, THF ve kloroform çözücüleri için F8T2 polimerinin maksimum molar tükenme katsayısı (εmax) değerlerindeki (sırasıyla 2.461x106, 2.371x106 ve 2.246x106 Lmol-1cm-1) maksimum kütle tükenme katsayısı (αmax) değerleri, sırasıyla 64.763, 62.395 ve 59.105 Lg-1cm-1 olarak bulunurken, 1.200 ve 0.800 μM için F8T2 polimer solüsyonlarının εmax değerlerindeki (sırasıyla 2.246x106 ve 1.736x106 Lmol-1cm-1) αmax değerleri, sırasıyla 59.105 ve 45.684 Lg-1cm-1 olarak bulundu. 19.737 μM ve THF çözücüsü için F8T2 polimerinin Egd değerleri (sırasıyla 2.220 ve 2.279 eV) en düşük değerler iken, 0.800 μM ve kloroform çözücüsü için F8T2 polimerinin Egd değerleri (sırasıyla 2.413 ve 2.387 eV) en yüksek değerlerdir. 19.737 μM ve THF çözücüsü için F8T2 polimerinin Egid değerleri (sırasıyla 2.113 ve 2.053 eV) en düşük değerler iken, 0.800 μM ve kloroform çözücüsü için F8T2 polimerinin Egid değerleri (sırasıyla 2.345 ve 2.305 eV) en yüksek değerlerdir. F8T2 polimerinin elde edilen Egid değerleri, F8T2 polimerinin elde edilen Egd değerlerinden çok daha düşüktür. Sonuç olarak, F8T2 polimer solüsyonlarının optik band-aralığı, molaritenin artmasıyla ve DCM, THF ve kloroform çözücüleri arasında THF kullanılarak azalabileceği görüldü.
Anahtar Kelimeler:

-

-

In this study, we investigated the surface morphology of the liquid-crystalline polymer poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-bithiophene] (F8T2) film by high performance atomic force microscopy and the surface roughness parameters of the F8T2 film such as; roughness average (sa), root mean square roughness (sq), surface skewness (ssk) and surface kurtosis (sku) value were obtained. Also, we reported the morphology of the cross-section (wall) and height histogtams of the F8T2 film by AFM. The positive skewness and high kurtosis of the F8T2 film are desirable to achieve low friction applications. The ratios of the sq to the sa for the F8T2 film were found to be 1.271 and 1.292. Then, we investigated in detail the optical properties of the solutions of the F8T2 polymer for different molarities and solvents. The absorbance, molar extinction coefficient (ε) and mass extinction coefficient (α) values of the F8T2 polymer decrease with decreasing molarity. The average transmittance, absorption band edge, direct (Egd) and indirect (Egid) energy-gap values of refraction of the F8T2 polymer increase with decreasing molarity. The maximum absorption wavelength (λmax) of the solutions of the F8T2 for 1.200 and 0.800 µM was found to be 455 nm, while the λmax of the F8T2 polymer for DCM, THF and Chloroform solvents were found to be 447, 453 and 455 nm, respectively. The yellow light of the F8T2 polymer is emitted 586 nm. The maximum mass extinction coefficient (αmax) values at maximum molar extinction coefficient (εmax) (2.246x106 and 1.736x106 Lmol-1cm-1, respectively) of the solutions of the F8T2 polymer for 1.200 and 0.800 µM were found to be 59.105 and 45.684 Lg-1cm-1, respectively, while the αmax values at εmax(2.461x106, 2.371x106 and 2.246x106 Lmol-1cm-1, respectively) of the F8T2 polymer for DCM, THF and Chloroform solvents were found to be 64.763, 62.395 and 59.105 Lg-1cm-1, respectively. The Egd values (2.413 and 2.387 eV, respectively) of the F8T2 polymer for 0.800 µM and Chloroform solvent are the highest values, while the Egd values (2.220 and 2.279 eV) of the F8T2 polymer for 19.737 µM and THF solvent are the lowest values. The Egid values (2.345 and 2.305 eV, respectively) of the F8T2 polymer for 0.800 µM and Chloroform solvent are the highest values, while the Egid values (2.113 and 2.053 eV) of the F8T2 polymer for 19.737 µM and THF solvent are the lowest values. The obtained Egid values of the F8T2 polymer are more lower than that of the obtained Egd values of the F8T2 polymer. Thus, the optical band-gap of the solution of the F8T2 polymer was decreased with increasing molarity and using THF solvent among DCM, THF and Chloroform solvents

___

  • Briseno, A.L., Mannsfeld, S.C., Ling, M.M., Liu, S., Tseng, R.J., Reese, C., Roberts, M.E., Yang, Y., Wudl, F., Bao, Z., Patterning organic single-crystal transistor arrays, Nature, 444 (7121), 913-917, 2006.
  • Lim, J.A., Liu, F., Ferdous, S, Muthukumar, M., Briseno, A.L., Polymer semiconductor Crystals, materialstoday, 13(5), 14-24 2010.
  • de Boer, R.W.I., Gershenson, M.E., Morpurgo, A.F., Podzorov, V., Organic singlecrystal field-effect transistors, Phys. Status Solidi a-Appl. Res., 201 (6), 1302- 1331, 2004.
  • Salleo, A., Charge transport in polymeric transistors, materialstoday, 10(3), 38-45, 2007.
  • Werzer, O., Matoy, M., Smilgies, D.M., Rothmann, M.M., Strohriegl, P., Resel, R., Uniaxially Aligned Poly[(9,9-dioctylfluorenyl-2,7-diyl)-cobithiophene] Thin Films Characterized by the X-ray Diffraction Pole Figure Technique, Journal of Applied Polymer Science, 107, 1817 1821,2008.
  • Kajii, H., Kasama, D., Ohmori, Y., Polymer Light-Emitting Diodes Fabricated Using Poly(9,9-dioctylfuorene) Gel by Thermal Printing Method, Jpn. J. Appl. Phys., 47, 3152-3155, 2008.
  • Kajii, H., Koiwai, K., Hirose, Y., Ohmori, Y., Top-gate-type ambipolar organic field-effect transistors with indium–tin oxide drain/source electrodes using polyfluorene derivatives, 2010, Organic Electronics, 11, 509–513, 2010.
  • Asada, K., Kobayashi, T., Naito, H., Control of Effective Conjugation Length in Polyfluorene Thin Films, Jpn. J. Appl. Phys., 45, L247-L249, 2006.
  • Sirringhaus, H., Wilson, R.J., Friend, R.H., Inbasekaran, M., Wu, W., Woo, E.P., Grell, M., Bradley, D.D.C., Mobility enhancement in conjugated polymer fieldeffect transistors through chain alignment in a liquid-crystalline phase, Appl Phys Lett ,77, 406-408, 2000.
  • Salleo, A., Street, R.A., Light-induced bias stress reversal in polyfluorene thinfilm transistors, J Appl Phys., 94, 471-479, 2003.
  • Salleo, A., Chabinyc, M.L., Yang, M.S., Street, R.A., Polymer thin-film transistors with chemically modified dielectric interfaces, Appl Phys Lett, 81, 4383-4385, 2002.
  • Boucle, J., Ravirajan, P., Nelson, J., Hybrid polymer–metal oxide thin films for photovoltaic applications, J. Mater. Chem., 17, 3141-3153, 2007.
  • Pattison, L.R., Hexemer, A., Kramer, E.J., Krishnan, S., Petroff, P.M., Fischer, D.A., Probing the ordering of semiconducting fluorene-thiophene copolymer surfaces on rubbed polyimide substrates by near-edge X-ray absorption fine structure, Macromolecules, 39, 2225-2231, 2006.
  • Jo, J., Vak, D., Noh, Y.Y., Kim, S.S., Lim, B., Kim, D.Y., Effect of photo- and thermo-oxidative degradation on the performance of hybrid photovoltaic cells with a fluorene-based copolymer and nanocrystalline TiO2, J. Mater. Chem., 18, 654-659, 2008.
  • Sirringhaus, H., Kawase, T., Friend, R.H., Shimoda, T., Inbasekaran, M., Wu, W., Woo, E.P., High-Resolution Inkjet Printing of All-Polymer Transistor Circuits, Science, 290, 2123-2126, 2000.
  • Huang, J.H., Yang, C.Y., Ho, Z.Y., Kekuda, D., Wu, M.C., Chien, F.C., Chen, P., Chu, C.W., Ho, K.C., Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend, Organic Electronics, 10, 27–33, 2009.
  • Gather, M.C., Bradley, D.D.C., An improved optical method for determining the order parameter in thin oriented molecular films and demonstration of a highly axial dipole moment for the lowest energy pi-pi* optical transition in poly(9,9- dioctylfluorene-co-bithiophene), Adv. Funct. Mater. 17(3), 479-485, 2007.
  • Lim, E., Jung, B.J., Chikamatsu, M., Azumi, R., Yoshida, Y., Yase, K., Do, L.M., Shim, H.K., Doping effect of solution-processed thin-film transistors based on polyfluorene, J. Mater. Chem., 17, 1416-1420, 2007.
  • Heredia, A., Bui, C.C., Suter, U., Young, P., Schaffer, T.E., Elastic properties of myelinated and de-myelinated mouse peripheral axons by atomic force microscopy, NeuroImage,37, 1218-1226, 2007.
  • Kumar, B.R., Rao, T.S., AFM Studies on surface morphology, topography and texture of nanostructured zinc aluminum oxide thin films, Digest Journal of Nanomaterials and Biostructures, 7(4), 1881-1889, 2012.
  • Nesheva, D.D., Vateva, E., Levi, Z., Arsova, D., Thin film semiconductor nanomaterials and nanostructures prepared by physical vapour deposition: An atomic force microscopy study. J. Phys Chem Solids, 68, 675-680, 2007.
  • Marchetto, D., Rota, A., Calabri, L., Gazzadi, G.C., Menozzi, C., Valeri, S., AFM investigation of tribological properties of nano-patternedsiliconsurface, Wear, 265, 577-582, 2008.
  • Jalili, N., Laxminarayana, K., A review of atomic force microscopy imaging systems: application to molecular metrology and biological sciences, Mechatronics, 14, 907-945, 2004.
  • Kwoka, M., Ottaviano, L., Szuber, J., AFM study of the surface morphology of L-CVD SnO2 thin films, Thin Solid Films, 515, 8328-8331, 2007.
  • Nagabhushana, K.R., Lakshminarasappa, B.N., Rao, K.N., Singh, F., Sulania, I., AFM and photoluminescence studies of swift heavy ion induced nanostructured aluminum oxide thin films. Nucl. Instr. & Meth. Phys. Res. B 266, 1049-1054, 2008.
  • Gizli, N., Morphological characterization of cellulose acetate based reverse osmosis membranes by Atomic Force Microscopy ( FM) effect of evaporation time, Chemistry & Chemical Technology, 5(3), 327-331, 2011.
  • Noureddine, T., Polycarpou, A.A., Modeling the effect of skewness and kurtosis on the static friction coefficient of rough surfaces, Tribology International, 37, 491–505, 2004.
  • Goldys, E.M., Shi, J.J., Linear and Nonlinear Intersubband Optical Absorption in a Strained Double Barrier Quantum Well, Phys. Status Solidi B, 210, 237-248, 1998.
  • Ahn, D., Chuang, S.L., Calculation of linear and nonlinear intersubband optical absorption in a quantum well model with an applied electric field, IEEE J. Quantum Electron, 23, 2196-2204, 1987.
  • Baghramyan, H.M., Barseghyan, M.G., Kirakosyan, A.A., Restrepo, R.L., Duque, Linear andnonlinearopticalabsorptioncoefficientsinGaAs/Ga1xAlxAs concentric double quantum rings: Effects of hydrostatic pressure and aluminum concentration, Journal of Luminescence, 134, 594 599, 2013.
  • Kazarinov, R.F., Suris, R.A., Possibility of the amplification of electromagnetic waves in a semiconductor with a superlattice, Sov. Phys. Semicond., 5, 707-709, 1971.
  • Miller, D.A.B., Quantum-well optoelectronic switching devices, Int. J. High Speed Electron. Syst., 1, 19-46, 1990.
  • Hood, T.H., Multiple quantum well (MQW) waveguide modulators, J. Lightwave Technol., 6, 743-757, 1988.
  • Ward, H.C., Chapter IV: Profile Characterization, Rough Surfaces (T.R. Thomas Ed., Longman, London, 1982).
  • D.J. Whitehouse, Handbook of Surface and Nanometrology, 2nd edition CRC press 2010.
  • Kolanek, K., Tallarida, M., Karavaev, K., Schmeisser, D., In situ studies of the atomic layer deposition of thin HfO2 dielectrics by ultra high vacuum atomic force microscope, Thin Solid Films, 518, 4688–4691, 2010.
  • Alley, R.L., Mai, P., Komvopoulos, K., Howe, R.T., Surface roughness modification of interfacial contacts in polysilicon microstructures. Proceedings of the Seventh International Conference on Solid-State Sensors and Actuators, Transducers’93, Yokohama, Japan, 7–10 June 1993. p. 288–291, 1993.
  • Liu, X., Chetwynd, G., Gardner, J.W., Surface characterization of electroactive thin polymeric film bearings, International Journal of Machine Tools of Manufacturer, 38(5–6), 669–675, 1998.
  • http://www.imagemet.com/index.php?id=35&main=products&sub=applications
  • Beer, A., Determination of the absorption of red light in colored liquids, Ann. Phys., 86, 78-88, 1852.
  • Li, Y., Scales, N., Blankenship, R.E., Willows, R.D., Chen, M., Extinction coefficient for red-shifted chlorophylls: Chlorophyll d and chlorophyll f, Biochimica et Biophysica Acta, 1817, 1292-1298, 2012.
  • M. Fox, Optical Properties of Solids. Oxford Master Series in Condensed Matter Physics ( Oxford University Press, Oxford, 2001).
  • Macedo, A.G., Silva, D.C., Yamamoto, N.A.D., Micaroni, L., Mello, R.M.Q, Roman, L.S., Bilayer and bulk heterojunction solar cells with functional poly(2,2- bithiophene) films electrochemically deposited from aqueous emulsion, Synthetic Metals, 170, 63–68, 2013.
Muş Alparslan Üniversitesi Fen Bilimleri Dergisi-Cover
  • ISSN: 2147-7930
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2013
  • Yayıncı: Muş Alparslan Üniversitesi