Mentha longıfolia L. Hudson ssp. longifolia’dan Elde Edilen Apigenin-7-O- glukozit ve Apigenin-7-O-rutinozit’in Genotoksik Potansiyelleri

Bitkilerden elde edilen, özellikle fenolik yapıdaki kimyasal maddeler, antioksidan özellikleri sayesinde reaktif oksijen türlerini inaktive ederek oksidatif hasarın önlenmesinde ve giderilmesinde önemli rol oynamaktadırlar. Buna karşın günümüzde, bitkisel ürünlerin çoğunun yapıları ve biyolojik etkinlikleri yeterince aydınlatılamamış olup, birçok bitkisel antioksidan maddenin toksisitesi ve insan sağlığına olan zararlarlarıyla ilgili çalışmalar yeterli değildir. Bu çalışma, Mentha longifolia L. Hudson ssp. longifolia bitkisinden izole edilen iki fenolik bileşik olan Apigenin-7-O-glikozit (A7G) ile Apigenin-7-O-rutinozit (A7R)’in genotoksik ve anti-genotoksik etkilerinin belirlenmesi üzerine tasarlanmıştır. İki fenolik bileşiğin, insan lenfosit hücrelerinde aflatoksin B1’e (AFB1) karşı genotoksik ve anti-genotoksik etkileri kardeş kromatid değişimi testi ile araştırılmıştır. Çalışma sonuçları A7G ve A7R’nin güçlü anti-genotoksik özelliklerinin olduğunu göstermiştir. 

Genotoxic potentials of apigenin-7-O-glucoside and apigenin-7-O-rutinoside isolated from Mentha longifolia (L.) Huds. ssp. Longifolia

Particularly the chemicals in phenolic structure obtained from plants play an important role in preventing and eliminating the oxidative damage by inactivating the reactive oxygen species due to their antioxidant properties. However, today the structures of the most herbal products and their biological activities have not been illuminated adequately; studies on the toxicity of the many herbal antioxidants and damage to human health are also not investigated properly.  This study was designed to evaluate the genotoxic and anti- genotoxic effects of two phenolic compounds, Apigenin 7-O-glucoside (A7G) and Apigenin 7-O-rutinoside (A7R)  which are isolated from Mentha longifolia (L.) Huds. ssp. longifolia. The genotoxic and anti- genotoxic effects of two compounds in human lymphocytes cells were investigated by sister chromatid exchanges (SCEs) test system against aflatoxin B1 (AFB1). The results showed that A7G and A7R have strong anti-genotoxic properties.

___

  • [1] Saldamlı İ. Gıda Kimyası. Hacettepe Üniversitesi Yayınları, Ankara, 463-492, 2007.
  • [2] Cemeroğlu B. Meyve ve Sebze İşleme Teknolojisi. Gıda Teknolojisi Derneği Yayınları, Ankara, No: 35, 77- 88, 2004.
  • [3] Nizamlioğlu N.M, Nas S. Meyve ve sebzelerde bulunan fenolik bileşikler; yapıları ve önemleri. Gıda Teknolojileri Elektronik Dergisi, 5(1), 20-35, 2010.
  • [4] Moskaug J. Ø., Carlsen H., Myhrstad M., Blomhoff R. Molecular imaging of the biological effects of quercetin and quercetin-rich foods. Mechanisms of ageing and development, 125(4), 315-324, 2004.
  • [5] Czeczot H., Bilbin M. Effect of flavones and their metabolites on induction of SOS repair in the strain PQ37 -E. coli K-12, Acta Biochim. Pol, 38, 71–74, 1991.
  • [6] Cao G., Sofic E., Prior R.L. Antioxidant and prooxidant behavior of flavonoids: Structure- activity relationships. Free Radical Biology and Medicine, 22(5), 749-760, 1997.
  • [7] Moran J.F., Klucas R.V., Grayer R.J., Abian J., Becana M. Complexes of iron with phenolic compounds from soybean nodules and other legume tissues: Prooxidant and antioxidant properties. Free Radical Biology and Medicine, 22(5), 861-70, 1997.
  • [8] Yen G. C., Chen H. Y., Peng H. H. Antioxidant and Pro-oxidant effects of various tea extracts. J Agric Food Chem, 45, 30-34, 1997.
  • [9] Davis P. H. Flora of Turkey and the East Aegean Islands 1-9, 1988.
  • [10] Orhan F. Mentha longıfolia L. Hudson ssp. longifolia’dan Elde Edilen Bazı Etken Maddelerin Ames/Salmonella ve Maya Delesyon Test Sistemleri ile Mutajen ve Antimutajen Özelliklerinin Belirlenmesi. Atatürk Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Erzurum, 2010.
  • [11] Öztürk A. Meme kanserli olguların lenfosit hücrelerinde kardeş kromatid değişimi sıklığı. Akdeniz Üniversitesi, Sağlık Bilimleri Enstitüsü, Tıbbi Biyoloji Anabilim Dalı, Yüksek Lisans Tezi, Antalya, 1995.
  • [12] Ceker S., Agar G., Alpsoy L., Nardemir G., Kizil H. E. Antagonistic effects of Satureja hortensis essential oil against AFB1 on human lymphocytes in vitro. methods, 48, 65-71, 2014.
  • [13] Perry P., Evans H. J. Cytological detection of mutagen-carcinogen exposure by sister chromatid exchange. Nature, 258, 121-125, 1975.
  • [14] Ramawat K.G., Dass S., Mathur M. The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin, 7-32, 2009.
  • [15] TKB (Tarım ve Köyişleri Bakanlığı). Aromatik ve Tıbbi Bitkiler, 2008.
  • [16] Georgiev M. I., Weber J., Maciuk A. Bioprocessing of plant cell cultures for mass production of targeted compounds. Applied Microbiology and Biotechnology, 83, 809-823, 2009.
  • [17] Sak K. Cytotoxicity of dietary flavonoids on different human cancer types. Pharmacogn Rev. 8(16), 122-146, 2014.
  • [18] Gradolatto A., Basly J. P., Berges R., Teyssier C., Chagnon M. C. Pharmacokinetics and metabolism of apigenin in female and male rats after a single oral administration. Drug Metab. Dispos. 33, 49-54, 2005.
  • [19] Siddique Y. H., Beg T., Afzal M. Antigenotoxic effect of apigenin against anti-cancerous drugs. Toxicology in vitro, 22, 625-631, 2008.
  • [20] Siddique Y. H., Afzal M. Antigenotoxic effect of apigenin against mitomycin Cinduced genotoxic damage in mice bone marrow cell. Food Chem Toxicol. 47, 536-539, 2009.
  • [21] Jin B. H., Qian L. B., Chen S., Li J., Wang. H. P. Apigenin protects endothelium-dependent relaxation of rat aorta against oxidative stress. Eur J Pharmacol, 616, 200-205, 2009.
  • [22] Siddique Y. H., Ara G., Beg T., Afzal, M. Anticlastogenic effect of apigenin in human lymphocytes treated with ethinylestradiol. Fitoterapia, 81, 590-594, 2010.
  • [23] Sharma N. K. Modulation of radiation-induced and mitomycin C-induced chromosome damage by apigenin in human lymphocytes in Vitro. Journal of radiation research, 54, 789-797, 2013.
  • [24] Ali F., Naz F., Jyoti S., Siddique Y. H. Protective effect of apigenin against N-nitrosodiethylamine (NDEA)-induced hepatotoxicity in albino rats. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 767, 13-20, 2014. [25] Shukla S., Gupta S., Molecular targets for apigenin-induced cell cycle arrest and apoptosis in prostate cancer cell xenograft. Mol Cancer Ther. 5, 843-852, 2006.
  • [26] Li R. R., Pang L. L., Du Q., Shi Y., Dai W. J., Yin K. S. Apigenin inhibits allergen-induced airway inflammation and switches immune response in a murine model of asthma, Immunopharmacol. Immunotoxicol, 32, 364-370, 2010.
  • [27] Estruch R., Ros E., Salas-Salvadó J., Covas M. I., Corella D., Arós, F., Gomez- Gracia E., Ruiz-Gutiérrez V., Lamuela-Raventos R. M. Primary prevention of cardiovascular disease with a Mediterranean diet. New England Journal of Medicine, 368, 1279-1290, 2013.
  • [28] Choi J. S., Islam M. N., Ali M. Y., Kim E. J., Kim Y. M., Jung H. A. Effects ofC-glycosylation on anti-diabetic, anti-Alzheimer’s disease andanti-inflammatory potential of apigenin. Food Chem Toxicol. 64, 27-33, 2014.
  • [29] Rithidech K. N., Tungjai M., Whorton E. B. Protective effect of apigenin on radiation-induced chromosomal damage in human lymphocytes. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 585, 96-104, 2005.
  • [30] Snyder R. D., Gillies P.J. Evaluation of the clastogenic, DNA intercalative, and topoisomerase II‐interactive properties of bioflavonoids in Chinese hamster V79 cells. Environmental and Molecular Mutagenesis, 40, 266-276, 2002.
  • [31] Stopper H., Schmitt E., Kobras K. Genotoxicity of phytoestrogens. Mutation Research, 574, 139-155, 2005.
  • [32] Noel S., Kasinathan M., Rath S. K. Evaluation of apigenin using in vitro cytochalasin blocked micronucleus assay. Toxicology in Vitro, 20, 1168-1172, 2006.
  • [33] Delazar A., Nazemiyeh H., Afshar F.H., Barghi N., Esnaashari S., Asgharian P. Chemical compositions and biological activities of Scutellaria pinnatifida A. Hamilt aerial parts. Research in Pharmaceutical Sciences, 12, 187, 2017.
  • [34] Makowska-Was J., Galanty A., Gdula-Argasinska J., Tyszka-Czochara M., Szewczyk A., Nunes R., Carvalho I. S., Michalik M., Pasko P. Identification of Predominant Phytochemical Compounds and Cytotoxic Activity of Wild Olive Leaves (Olea europaea L. ssp sylvestris) Harvested in South Portugal. Chemistry Biodiversity, 14, 3, e1600331, 2017.
  • [35] Erenler R., Sen O., Yildiz I., Aydin A. Antiproliferative Activities of Chemical Constituents Isolated from Thymus praecox subsp grossheimii (Ronniger) Jalas. Records of Natural Products, 10, 766-770, 2016.
  • [36] Gulluce M., Orhan F., Yanmis D., Arasoglu T., Guvenalp Z., Demirezer L. O. Isolation of a flavonoid, apigenin 7-O-glucoside, from Mentha longifolia (L.) Hudson subspecies longifolia and its genotoxic potency. Toxicology and industrial health, 31, 831-840, 2015.
  • [37] Shi Q. Q., Dang J.,Wen H. X.,Yuan X., Tao Y. D.,Wang Q. L. Anti-hepatitis, antioxidant activities and bioactive compounds of Dracocephalum heterophyllum extracts. Botanical Studies, 57, 16, 2016.
  • [38] Gulluce M., Orhan F., Adiguzel A., Bal T., Guvenalp Z., Dermirezer L. O. Determination of antimutagenic properties of apigenin-7-O-rutinoside, a flavonoid isolated from Mentha longifolia (L.) Huds. ssp. longifolia with yeast DEL assay. Toxicology and Industrial Health, 29, 534-540, 2013.