Kolon Flotasyonunda Hava Hızının Su ile Taşınıma Etkisi

Hidrofilik tanelerin konsantreye gelmesinde önemli rol oynayan su ile taşınım, kolon içerinde tabandan yukarı yükselen hava kabarcığının arkasında veya çevresinde su ile ya da köpük ara yüzeyinde yukarı doğru hareket eden hava kabarcıkları tarafından ince tanelerin itilerek köpük fazı içine taşınması olayıdır. Bu çalışmada, 5 cm çapında 75 cm yüksekliğinde dairesel kesitli kolon hücresi kullanılmıştır. Yüksek saflıktaki kalsit (%97,78 CaCO3) ve sölestit (%97,20 SrSO4) minerallerinin karışımı (1:1 oranında) ile değişen hava kabarcığı hızlarında kalsit, sölestit ve su verimi değerleri hesaplanmış, Kirjevainen Modeli (1989) kullanılarak kalsit için su ile taşınım faktörü (Pi) elde edilmiştir. Kolon hücresi ile 1 cm/sn hava hızlarında 4. dakika kalma süresinde konsantrede yüksek verim ve seçimlilik değerine ulaşılmış ve en düşük su ile taşınım faktörü (Pi: 0,365) elde edilmiştir.

Influence of Superficial Air Rate on Entrainment in Column Flotation

Entrainment, which is play an important role in the water-entrained concentration of hydrophilic particles, takes place behind or round the uprising air bubbles, through the pushing of the water or the uprising bubbles the entrainment of fine particles at the bubble interface. In this study, a column cell with a height of 75 cm, diameter of 5 cm and circular cross-section was used in our experiments. Calcite, sölestit and water recovery were calculated with a mixture (1: 1 ratio) of artificial minerals of high purity calcite (97,78% CaCO3) and celestite (97,20% SrSO4) at different superficial air rates. The results showed that the superficial air rate had significant effect on the grade and recovery, flotation time, and fine gangue entrainment. When the superficial air rate (1 cm/sec.) were used, high recovery and selectivity values ​​were reached in column flotation (4th minute residence time) and entrainment factor was calculated the lowest (Pi: 0,365). The superficial air rate also influenced flotation rate and recovery of celestite particles to a great extent. Kirjaveinen (1989) model was used for describing a specific entrained factor (Pi) of hydrophilic particles in this study.

___

  • Finch, J.A. & Dobby, G.S. (1990). Column Flotation, Pergamon Press, Oxford (UK), USA, 180.
  • Gaudin, A. M., Groh, J.O. & Henderson, H.B. (1931) Effect of particle size on flotation, A.Tech. Publ., 414, 3-23.
  • Goodal, C.M. and O’Connor, C.T. (1992). Residence Time Distribution Studies in a Flotation Column, Part 1- The Relationship Between Solids Residence Time Distribution and Metallurgical Performance, Int. J. Miner. Process., 36, 219-228.
  • Groppo, J.G. & Parekh, B.K. (1990). Continuous Pilot Scale Testing of Column Flotation for Very Fine Coal from Refuse, Minerals & Metallurgical Processing, February, 9-12.
  • Groppo, J.G. & Parekh, B.K. (1993). Comparison of Bubble Generatings Devices for Column Flotation of Fine Coal, Mining Engineering, October, 1189-1990.
  • Johnson, N.W., MC Kee, D.J. & Lynch, A.j. (1974). Flotation Rates of Non-Sulphide Minerals in Chal-copyrite Processes Trans.Am.Ins.Min. Metall.Pet. Eng., 256, 204-226. Jowett, A., (1966). Gangue Mineral Contamination of Froth, Br. Chem.Eng., 2 (5), 330-333. Kirjavainen, V.M. & Laapas, H.R. (1988). A Study of Entrainment Mechanism in Flotation, XVI Interna-tional Mineral Processing Congress, Stockholm, Sweden, June 5-10, Part B. Forssberg K.S.E. ed. (Am-sterdam), etc: Elsevier, 665-677 Kirjavainen, V.M. (1989). Apllication of a Probabil-ity Model for the Entrainment of Hidrophilic Parti-cles in Froth Flotation, Int.J.Miner. Process., 27, 63-74. Kirjavainen, V.M. (1992). Mathematical model for the entrainment hydrophilic particles in froth flota-tion, Int.J.Miner. Process., 35, 1-11. Kirjavainen, V.M. (1996). Review and analysis of factors controlling the mechanical flotation of gangue minerals. International Journal of Mineral Processing, 46(1-2): 21-34.
  • Kracht, W., Orozco, Y. & Acuña, C. (2016). Effect of surfactant type on the entrainment factor and se-lectivity of flotation at laboratory scale. Minerals Engineering 92, 216–220.
  • Konopacka, Z. & Drzymala J. (2010). Types of parti-cles recovery-water recovery entrainment plots useful in flotation research, Adsorption, 16: 313-320.
  • Kursun, H. (2003). Talkın Kolon Flotasyonu ile Zenginleştirilmesinde Parametrelerin İncelenmesi, Cumhuriyet Üniversitesi, Maden Mühendisliği Anabilim Dalı, Doktora Tezi, Turkey, 147. Kursun, H. (2014). Effect of fine particles’ entrain-ment on conventional and column flotation, Partic-ulate Science and Technology, 32 (3) 251-256.
  • Kursun, H. (2017). The influence of frother types and concentrations on fine particles entrainment using column flotation, Separation Science and Tech-nology, 52(4), 722-731
  • Maksimov, I.I., Borkin, A.D. & Emelyanov, M.F. (1991). The Use of Column Flotation Machines for Cleaning Operations in Concentrating Non-Ferrous Ores, XVII. Internatıonal Mineral Processing Con-gress Dresden /FRG.
  • Melo, F. & Laskowski, J.S. (2007). Effect of frothers and solid particles on the rate of water transfer to froth. Int. J. Miner. Process. 84, 33–40.
  • Rahal, K., Manlaping, E., Franzidis, J.P. (2001). Ef-fect of frother type and concentration on the water recovery and entrainment recovery relationship. Miner. Metall. Process. 18, 138–141.
  • Savassi, O.N., Alexander, J.P., Franzidis, J.-P. & Manlapig, E.V., (1998). An empirical model for en-trainment in industrial flotation plants, Minerals Engineering, 11(3): 243-256. Wang, L., Peng, Y. & Runge, K. (2016). Entrainment in froth flotation: the degree of entrainment and its contributing factors. Powder Technol. 288, 202–21.
  • Wang, L., Peng, Y. & Runge, K. (2017). The mecha-nism responsible for the effect of frothers on the degree of entrainment in laboratory batch flotation. Minerals Engineering, 100, 124-131.
  • Wiese, J. & Harris, P. (2012). The effect of frother type and dosage on flotation performance in the presence of high depressant concentrations. Miner. Eng. 36–38, 204–210.
  • Yianatos, J.B., Contreras, F., Díaz, F. & Villanueva, A., (2009). Direct measurement of entrainment in large flotation cells, Powder Technology, 189: 42-47.
  • Yianatos, J. & Contreras F. (2010). Particle entrain-ment model for industrial cells. Powder Technology, 197: 260–267
  • Zheng, X., Franzidis, J.P., Johnson, N. W. & Man-lapig, E. V. (2005a). Modelling of entrainment in industrial flotation cells: The effect of solids suspen-sion, Minerals Engineering, 18: 51–58.
  • Zheng, X., Franzidis, J.P. & Johnson, N.W. (2005b). An evaluation of different models of water recovery in flotation, Minerals Engineering, 19:871–882.
  • Zheng, X., Johnson, N.W. & Franzidis, J.-P. (2006). Modelling of entrainment in industrial Flota-tion cells: Water recovery and degree of entrain-ment, Minerals Engineering, 19, 1191-1203.