YÜZEY YANIT METODU İLE OPTİMİZE EDİLEN METİL LAURAT ÜRETİMİNİN MEMBRAN REAKTÖRDE UYGULAMASI

Bu çalışmada,yüzey yanıt yöntemi kullanılarak laurik asit ve metanol arasındaki esterleşme reaksiyonunun Amberlit 36 katalizörü varlığında optimum operasyon koşulları verimi maksimize edecek şekilde belirlenmiştir. Laurik asit dönüşümüne sıcaklık (50 °C, 57.5 °C. 65 °C), alkol:asit molar besleme oranı (2:1, 4:1, 6:1), katalizör konsantrasyonunun (%1, %2, %3) etkileri belirlenmiş ve optimizasyon ile belirlenen noktada aynı reaksiyon membran reaktörde de gerçekleştirilmiştir. Polivinil alkol membranın kullanıldığı tek kademeli membran reaktörde elde edilen sonuç ile kesikli reaktörde elde edilen dönüşüm sonucu karşılaştırılmış ve membran reaktörün dönüşüme etkisi belirlenmiştir. Reaksiyonlar beş saat sürdürülmüştür. Hem parametrik hem de optimizasyon sonuçlarına göre katalizör oranının dönüşüme etkisinin düşük olduğu, sıcaklık ve molar besleme oranının ise asit dönüşümüne etkisinin yüksek olduğu görülmüştür. En yüksek dönüşüm değeri % 77 ile 65 °C sıcaklıkta, alkol:asit molar besleme oranı 6:1 iken, %3 katalizör oranı ile elde edilmiştir. Belirlenen bu koşullarda membran reaktör deneyinde ise dönüşüm değeri % 95 olarak elde edilmiştir. Membran reaktör kullanımı ile % 23 dönüşüm iyileştirilmesi gerçekleşmiştir. 

OPTIMIZATION OF METHYL LAURATE SYNTHESIS USING RESPONSE SURFACE METHODOLOGY AND MEMBRANE REACTOR APPLICATION

In this study, the reaction between lauric acid and methanol in the presence of Amberlyst 36 was optimized using response surface methodology to maximize the conversion of the reaction. Effect of temperature (50, 57,5, 65 °C), alcohol:acid molar ratio (2:1, 4:1, 6:1), catalyst concentration (%1, %2, %3) on acid conversion were determined and membrane reactor application was performed at optimized operation conditions. The results obtained in the batch and the membrane reactors were compared. Reactions were carried out for five hours. According to the numeric and optimization analysis, it was observed that while the effect of catalyst on conversion was not remarkable, the effects of temperature and initial molar ratio on conversion were significant. The highest conversions were obtained as 77 % and 95 % at the batch reactor and membrane reactor respectively when the molar ratio was 6:1, catalyst concentration was 3 % (wt.) at 65 °C. Optimization results also confirmed that the highest conversion obtained at higher conditions except of catalyst amount. At the given conditions, higher than 23 % conversion improvement was achieved by using the membrane reactor.    

___

  • Anastas, P., Eghbali, N. (2010). Green Chemistry: Principles and Practice, Chem. Soc. Rev., 39, 301–312. Atadashi, I. M., Aroua, M. K. Abdul Aziz, A. R. Sulaiman, N. M.N. (2011). Membrane Biodiesel Production and Refining Technology: A Critical Review, Renewable and Sustainable Energy Reviews, 15(9): 5051–5062. Athankar, K. K., Kailas L. Wasewar, Mahesh N. V., Diwakar Z. S. (2016) Reactive Separation of Benzeneacetic Acid with Tri-N-Caprylyl Amine: Equilibrium and Modeling. Journal of Chemical and Engineering Data, 61(7): 2335–45. Basile, Angelo, and Fausto Gallucci. (2010). Membranes for Membrane Reactors. John Wiley & Sons, West Sussex, United Kingdom Cao, P., Dubé, M. A. Tremblay. A.Y. (2008) High-Purity Fatty Acid Methyl Ester Production from Canola, Soybean, Palm, and Yellow Grease Lipids by Means of a Membrane Reactor. Biomass and Bioenergy, 32(11): 1028–36. Dubé, M. A., Tremblay, A. Y. Liu, J. (2007) Biodiesel Production Using a Membrane Reactor.Bioresource Technology, 98(3): 639–47. Iliuta, I, Larachi, F., Fongarland. P. (2010) Dimethyl Ether Synthesis with in Situ H 2 O Removal in Fixed-Bed Membrane Reactor: Model and Simulations, Industrial & Engineering Chemistry Research, 49(15): 6870–77. Kiss, A.Al. (2014) Process Intensification Technologies for Biodiesel Production Reactive Separation Processes. Springer, Netherlands. Krishnaiah, D., Sarbatly, R., Bono, A., Anisuzzaman, S.M., Subramaniam, S. (2014) Effect of Polyethylene Glycol Membrane on the Separation of Biodiesel from Palm Oil, Journal of Applied Sciences, 14 (12) 1271-1276. Law, R., Colin R., David R.. (2017) Process Intensification – Overcoming Impediments to Heat and Mass Transfer Enhancement When Solids Are Present, Thermal Science and Engineering Progress, 1: 53–58. Marques, S. Matos, C.T., Gírio, F.M., Roseiro, J.C., Santos, J.A.L. (2017) Lactic Acid Production from Recycled Paper Sludge: Process Intensification by Running Fed-Batch into a Membrane-Recycle Bioreactor. Biochemical Engineering Journal 120: 63–72. Cinthia, M.D. J., Duncan J. M.. (2014)Esterification of Lauric Acid with Methanol Using Sulfonated Starbons.” Research Journal of Chemistry and Environment, 18(8): 1–6. Nigiz, F. U. (2016) Pervaporasyon Biyokatalitik ve Katalitik Membran Reaktör ile Etil Laktat Üretimi, Kocaeli Üniversitesi, Doktora tezi, Kocaeli. Nigiz, F.U., Hilmioglu, N.D. ( 2016). Green Solvent Synthesis from Biomass Based Source by Biocatalytic Membrane Reactor. 40: 71–80. Segovia-Hernandez, J.G., Bonilla-Petriciolet, A. (2016) Process Intensification in Chemical Engineering Design Optimization and Control, Springer International Publishing Switzerland. Wang, C., Gui, X., Yun, Z. (2014). Esterification of Lauric and Oleic Acids with Methanol over Oxidized and Sulfonated Activated Carbon Catalyst. Reaction Kinetics, Mechanisms and Catalysis 113(1): 211–23. Xu, W. Gao, L., Xiao. G. (2015). Biodiesel Production Optimization Using Monolithic Catalyst in a Fixed-Bed Membrane Reactor. Fuel 159: 484–90. Zatta, L., Pereira Ramos, L., Wypych, F. (2012). Acid Activated Montmorillonite as Catalysts in Methyl Esterification Reactions of Lauric Acid. Journal of Oleo Science 61(9): 497–504.