SUDA TPH (TOPLAM PETROL HİDROKARBONLARI) ANALİZİNİN PETROL VE DOĞALGAZ ARAMA AMAÇLI KULLANIMI: TÜRKİYE’DEN ÖNEMLİ İLK SONUÇLAR

Hidrokarbon birikimleri ile ilişkide olan veya hidrokarbonlar tarafından kirletilmiş yüzey ve yeraltısuları tipik olarak yüksek miktarda hidrokarbon içerirler. Su numunelerinde TPH (Toplam Petrol Hidrokarbonları) değeri, yüzey ve yeraltısularının hidrokarbon kirliliğini belirlemek için kullanılan önemli bir parametredir. Bu çalışmada, suların hidrokarbon içeriğini tanımlayan TPH (toplam petrol hidrokarbonları) analizlerinin, petrol ve doğalgaz aramacılığında kullanılabilirliğinin incelenmesi amaçlanmıştır. Bu amaçla, Yüksekova (Hakkari), Ulukışla (Niğde) ve Hasanoğlan (Ankara) bölgeleri yeraltısularında yapılan TPH analizlerine ait sonuçlar, aynı bölgedeki klasik petrol jeokimyası analiz sonuçları ile karşılaştırılmıştır. İncelenen su numunelerinin tamamının TPH değerlerinin yeraltısuları için önerilen sınır değerden oldukça yüksek olduğu görülmüştür. Ayrıca, her üç bölge sularında da olgun doğal petrol kaynaklı n-alkan hidrokarbonları tespit edilmiştir. Çalışma sonucunda, numune alma işlemi oldukça basit, laboratuvar analizleri de çok kısa sürede sonuçlandırılan, düşük maliyetli, güvenilir ve tutarlı sonuçları olan rezervuar hedefli suda TPH (Toplam Petrol Hidrokarbonları) analizleri ile petrol ve doğalgaz birikimleri içeren havzaların belirlenebileceği sonucuna ulaşılmıştır. Diğer jeolojik ve jeofizik yöntemler ile birlikte kullanılması durumunda da, hidrokarbon arama riskini en aza indirmek ve ticari üretim yapılabilir yeni petrol ve doğalgaz yataklarının keşfedilebilmesi için pratik ve etkili bir araç olarak kullanılabilecektir. Ayrıca, sonuçlarının kontrol edilebilir ve kolay tekrarlanabilir olması nedeniyle, arama risk ve maliyetlerini büyük ölçüde azaltacağı düşünülmektedir.

USAGE OF TPH (TOTAL PETROLEUM HYDROCARBONS) IN WATER ANALYSIS FOR OIL AND GAS EXPLORATION: FIRST IMPORTANT RESULTS FROM TURKEY

Surface waters and groundwaters associated with hydrocarbon accumulations or contaminated by hydrocarbons typically contain high amounts of hydrocarbons. TPH (Total Petroleum Hydrocarbons) value in water samples is an important parameter used to determine hydrocarbon contamination of surface waters and groundwaters. In this study, it is aimed to examine TPH analysis which describe the hydrocarbon content of waters in oil and gas exploration. For this purpose, the results of TPH analysis in water samples of Yüksekova (Hakkari), Ulukışla (Niğde) and Hasanoğlan (Ankara) regions are compared with the results of classical petroleum geochemistry analysis in the same regions. It has been found that the TPH values of all examined water samples are considerably higher than the recommended limit values for groundwaters. In addition, petrogenic (natural crude oil) mature n-alkane hydrocarbons have been determined in all three regional waters. As a result of the study, the sampling is very simple and the laboratory analysis have reached TPH in water analysis in reservoir-targeted with low cost, reliable and consistent results, which can be concluded in a very short time and the result that the basins containing oil and gas deposits can be determined. When used in together with other geological and geophysical exploration methods, it can also be used as a practical and effective tool to minimize the risk of hydrocarbon exploration and to discover new oil and gas deposits that are commercial production. In addition, all the petroleum geochemical analysis (gas chromatography, gas chromatography, mass spectroscopy, pyrolysis, etc.) on rock samples can also be applied successfully on hydrocarbon containing water samples.

___

  • Adeniji, A.O., Okoh, O.O. and Okoh, A.I., 2017. Petroleum hydrocarbon profiles of water and sediment of Algoa Bay, Eastern Cape, South Africa. Int. J. Environ. Res. Public Health, 14, 1263; doi:10.3390/ijerph14101263
  • Adewuyi, G.O. and Olowu, R.A., 2012. Assessment of oil and grease, total petroleum hydrocarbons and some heavy metals in surface and groundwater within the vicinity of NNPC oil depot in Apata, Ibadan Metropolis, Nigeria. IJRRAS, 13 (1), 166-174
  • Akar, Ç., Yılmazer, P., Tokoğlu, E.E., Araç, B., Günaydın, S., Çetin, S., 2018. Niğde-Ulukışla Gaz ve Su Örneklerinin Jeokimyasal Değerlendirme Raporu. TPAO Rapor No: 4310 (Yayımlanmamış)
  • Al Darwish, H.D.A., 2004. Assessment of organic and inorganic pollutants in the offshore sediments, Dubai, UAE. United Arab Emirates University. MSc. Thesis, 366 p.
  • Allan, J. and Douglas, A.G., 1977. Variations in the content and distribution of n-alkanes in a series of carboniferous vitrinites and sporinites of bituminous rank. Geochimica et Cosmochimica Acta, 41, 1223-1230
  • ATSDR (Agency for Toxic Substances and Disease Registry), 1999. Toxicological Profile for Total Petroleum Hydrocarbons (TPH). Atlanta. GA: US Department of Health and Human Services. Public Health Service, 231 p.
  • Ayotamuno, M.J., Kogbara, R.B., Ogaji, S.O.T. and Probert, S.D., 2006. Petroleum contaminated ground-water: Remediation using activated carbon. Applied Energy, 83, 1258-1264Banga, T., Capuano, R.M. and Bissada, K.K., 2011. Petroleum generation in the southeast Texas basin: Implications for hydrocarbon occurrence at the South Liberty salt dome. AAPG Bulletin, 95(7), 1257-1291
  • Beyer, J., Jonsson, G., Porte, C., Krahn, M.M. and Ariese, F., 2010. Analytical methods for determining metabolites of polycyclic aromatic hydrocarbon (PAH) pollutants in fish bile: a review. Environ Toxicol Pharmacol, 30(3), 224-244
  • Bray, E.E. and Evans, E.D., 1961. Distribution of n-paraffins as a clue to recognition of source rocks. Geochim. Cosmochim, Acta. 22, 2-15
  • Bray, E.E. and Evans, E.D., 1965. Hydrocarbons in non-reservoir-rock source beds: Part 1. American Association of Petroleum Geologists Bulletin, 49, 248-257
  • Campos J.C., Borges R.M.H., Filho A.M.O., Nobrega R., and Sant’Anna Jr. G.L., 2002. Oilfield wastewater treatment by combined microfiltration and biological processes. Water Research, 36, 95 - 104
  • Chen, J., Liu, D., Peng, P., Ning, C., Xiaolin, H. and Baoshou, Z., 2016. Iodine-129 chronological study of brines from an Ordovician paleokarst reservoir in the Lunnan oilfield, Tarim Basin. Applied Geochemistry, 65, 14-21
  • Collins, A.G. and Egleeson, G.C., 1967. Iodine abundance in oilfield brines in Oklahoma. Science, 156, 934-935
  • Çoban, M.K., 2017. Petrol Hidrojeolojisi (İkinci Baskı). Poyraz Ofset. 533 s.
  • Çorbacıoğlu, H., Kırman, Z.D., Yılmazer, P., Doğan, S., Tokoğlu, E.E., Araç, B., Türesin, F.M., Huvaj, N.Y., Elmacı, A., Türkecan, A.T., Çevik, T., Bahtiyar, İ., Sarıkaya, H., Aydın, MG., Bakırhan, B. ve Yüksel, M., 2018. Hakkâri-Yüksekova-Hisardağı Bölgesi’nden Alınan Su, Emare ve Kayaç Örneklerinin Değerlendirme Raporu. TPAO Rapor No: 4297 (Yayımlanmamış)
  • Didyk, B.M., Simoneit, B.R.T., Brassel, S.C. and Englington, G., 1978. Organic geochemical indicators of paleoenvironmental conditions of sedimentation. Nature, 272, 216-222
  • Doğanay, E., 2014. AB Su Çerçeve Direktifine Göre Ülkemiz Sularının Fizikokimyasal ve Kimyasal Parametreler Açısından İzlenebilmesi için Kullanılabilecek Analiz Metotlarının Değerlendirilmesi, Orman ve Su İşleri Bakanlığı, Uzmanlık Tezi, 205 s.Dow, W.G., 1978. Petroleum source beds on continental slope and rises. Amer. Assoc. Petr. Geol. Bull., 62(9), 1584-1606
  • Ekpo, B.O., Essien, N., Fubara, E.P., Ibok, U.J., Ukpabio, E.J. and Wehner, H., 2013. Petroleum geochemistry of Cretaceous outcrops from the Calabar Flank, southeastern Nigeria. Marine and Petroleum Geology, 48, 171-185
  • El Nemr, A., Moneer, A.A., Ragab, S. and Sikaily, A.E., 2016. Distribution and sources of n-alkanes and polycyclic aromatic hydrocarbons in shellfish of the Egyptian Red Sea coast. Egyptian Journal of Aquatic Research (2016), http://dx.doi.org/10.1016/j.ejar.2016.05.003
  • Emara, H.I., 1998. Total organic carbon content in the waters of the Arabian Gulf. Environment Int., 24(1/2), 97-103
  • Fabryka-Martin, J.T., Bentley, H., Elmore, D. and Airey, P.L., 1985. Natural iodine-129 as environmental tracer: Geochim. Cosmochim. Acta, 49, 337-347
  • Fabryka-Martin, J.T., Davis, S.N. and Elmore, D., 1987. Applications of 129I and 36Cl in hydrogeology: Nucl. Instrum. Methods Phys. Res., B29, 361-371
  • Fan, W., Yang, Y.S., Du, X.Q., Lu, Y. and Yang, M.X., 2011. Finger-Printing Biodegradation of Petroleum Contamination in Shallow Groundwater and Soil System Using Hydro-bio-geochemical Markers and Modelling Support, Water Air Soil Pollut., 220, 253-263
  • Fehn, U., Moran, J.E., Snyder, G.T. and Muramatsu, Y., 2007. The initial 129I/I ratio and the presence of “old” iodine in continental margins. Nuclear Instruments and Methods in Physics Research Section B-Beam Interactions with Materials and Atoms, 259, 496-502
  • Fehn, U., Tullai, S., Teng, R.T.D., Elmore, D. and Kubik, P.W., 1987. Determination of 129I in heavy residues of two crude oils: Nucl. Instrum. Methods Phys. Res., B52, 446-45
  • Frimmel, A., Oschmann, W. and Schwark, L. 2004. Chemostratigraphy of the Posidonia Black Shale, SW Germany: I. Influence of sea-level variation on organic facies evolution. Chemical Geology, 206, 199-230
  • Gawad, E.A., Lotfy, M.M. and Sakroon, S.A., 2010. Assessing the organic and inorganic pollutants of oilfield brine water in Marmul area, Sultanate of Oman. Australian Journal of Basic and Applied Sciences, 4(5), 859-876
  • Hakimi, M.H., Al-Matary, A.M. and Ahmed, A.., 2017. Bulk geochemical characteristics and carbon isotope composition of oils from the Sayhut sub-basin in the Gulf of Aden with emphasis on organic matter input, age and maturity. Egyptian Journal of Petroleum, https://doi.org/10.1016/j.ejpe.2017.06.002
  • Hartkopf-Fröder, C., Kloppisch, M., Mann, U., Neumann-Mahlkau, P., Schaefer, R.G. and Wilkes, H., 2007. The end-Frasnian mass extinction in the Eifel Mountains, Germany: new insights from organic matter composition and preservation. Geological Society, London, Special Publications, 278, 173-196. doi: 10.1144/SP278.8
  • Heroux, Y., Chagnon, A.G. and Bertrand, R., 1979. Compilation and correlation of major thermal maturation indicators. AAPG Bulletin, 63, 2128-2144
  • Hunt, J.M., 1995. Petroleum Geochemistry and Geology. W.H. Freeman and Company, New York. 743 p.
  • Kartsev, A.A., Tabasaranskii, S.A., Subbota, M.I. and Mogilevsky, G.A., 1954. Geochemical methods of prospecting and exploration for petroleum and natural gas (P. A. Witherspoon and W. D, Romey, eds., English translation) : Berkeley, Univ. Calif. Press, 1959, 238 p.
  • Kendrick, M.A. and Phillips, D., 2009. New constraints on the release of noble gases during in vacuo crushing and application to scapolite Br-Cl-I and 40Ar/39Ar age determinations. Geochim. Cosmochim. Acta, 73, 5673-5692
  • Kendrick, M.A., Phillips, D., Wallace, M. and Miller, J.McL., 2011. Halogens and noble gases in sedimentary formation waters and Zn-Pb deposits: A case study from the Lennard Shelf, Australia. Applied Geochemistry, 26, 2089-2100
  • Kırkland, D.W. and Evans, K., 1981. Source rock potential of evaporitic environment. Amer. Assoc. Petr. Geol. Bull., (65/2), 181-190
  • Kolukırık, M., İnce, O., Çetecioğlu, Z., Çelikkol, S., İnce, B.K., 2011. Spatial and temporal changes in microbial diversity of the Marmara Sea Sediments. Marine Pollution Bulletin, 62, 2384-2394
  • Kolukırık, M., İnce, O. and İnce, B.K., 2009. Local and Seasonal Changes in Microbial Diversity of the Marmara Sea Sediments. Mar Pollut Bull MPB-D-09-00623 (Ketre, C.Z., 2010. Anaerobic BTEX Degrading Microorganism Abundances in Marmara Sea Sediments. İstanbul Teknik Üniversitesi, Yüksek Lisans Tezi, 137 s. içerisinde)Koons, C.B., Jamieson, G.W. and Ciereszko, L.S., 1965. Normal alkane distributions in marine organisms: possible significance to petroleum origin. Bull. Am. Assoc. Petrol. Geol., 49; 301-316
  • Kurchikov, A.R. and Plavnik, A.G., 2009. Clustering of groundwater chemistry data with implications for reservoir appraisal in West Siberia. Russian Geology and Geophysics 50, 943-949
  • Land, L.S., 1991. Evidence for vertical movement of fluids, Gulf Coast Sedimentary Basin: Geophys. Res. Lett., 18(5) 919-922
  • Lee, R., Seright, R., Hightower, M., Sattler, A., Cather, M., McPherson, B., Wrotenbery, L., Martin, D. and Whitworth, M., 2002. Strategies for Produced Water Handling in New Mexico. Groundwater Protection Council Produced Water Conference, http://www.gwpc.org/meetings/special/PW%202002/Papers/ Robert_Lee_PWC2002.pdf
  • Lundegard, P.D. and Sweeney, R.E., 2004. Total petroleum hydrocarbons in groundwater-evaluation of nondissolved and nonhydrocarbon fractions. Environmental Forensics, 5(2), 85-95, DOI: 10.1080/15275920490454346
  • Massoud, S., Al-Abdali, F., Al-Ghadban, A.N. and Al-Sarawi, M., 1996. Bottom sediments of the Arabian Gulf II: TPH and TOC contents as indicators of oil pollution and implications for the effect and fate of the Kuwait oil slick. Environmental Pollution, 93(27), 1-284.
  • Mazor, E., 2004. Global Water Dynamics (Shallow and Deep Groundwater, Petroleum Hydrology, Hydrothermal Fluids, and landscaping). Marcel Dekker, Inc., 393 p.
  • Meinhold, R., 1972. Hydrodynamic control of oil and gas accumulation as indicated by geothermal, geochemical and hydrological distribution patterns, Trans. 8th World Petrol. Cong., 2, 55-66
  • Mille, G., Asia, L., Guiliano, M., Malleret, L. and Doumenq, P., 2007. Hydrocarbons in coastal sediments from the Mediterranean Sea (Gulf of Fos area, France). Marine Pollution Bulletin, 54, 566-575
  • Momper, J.A., 1978. Oil migration limitations suggested by geological consideration. AAPG. Bull., Continuing Educ. Course Note, 8, 21-38
  • Moran, J.E., Fehn, U. and Hanor, J.S., 1995. Determination of source ages and migration of brines from the U.S. Gulf Coast basin using 129 I. Geochim. Cosmochim. Acta 59, 5055-5069Neff, J.M., 2002. Bioaccumulation in Marine Organisms: Effect of Contaminants from Oil Well Produced Water. Elsevier Science, 452 p.
  • Obermajer, M., Osadetz, K.G., Fowler, M.G., Snowdon, L.R., 2000. Light hydrocarbon (gasoline range) parameter refinement of biomarker-based oil-oil correlation studies: an example from Williston Basin. Organic Geochemistry, 31, 959-976
  • Onojake, M.C., Osuji, L.C. and Oforka, N.C., 2013. Preliminary hydrocarbon analysis of crude oils from Umutu / Bomu fields, south west Niger Delta Nigeria. Egyptian Journal of Petroleum, 22, 217-224
  • Oppo, D. and Capozzi, R., 2015. Spatial association of mud volcano and sandstone intrusions, Boyadag anticline, western Turkmenistan. Basin Research, 1-13, doi: 10.1111/bre.12136
  • Özdemir, A., Turgay, S.O. and Şahinoğlu, A., 2018. High accuracy estimation with computer-aided hydrogeochemical methods of oil and gas deposits in wildcat sedimentary basins. Journal of Applied Geology and Geophysics, 6(4) (baskıda)
  • Özdemir, A., 2018a. Güneydoğu Anadolu havzasında petrol ile iyot ilişkisi. MTA Dergisi (baskıda)
  • Özdemir, A., 2018b. Petrol ve iyot arasındaki oluşum, göç ve kapanlanma ilişkileri. Kahramanmaraş Sütçü İmam Üniversitesi Mühendislik Bilimleri Dergisi (hakemde)
  • Özdemir, A., 2018c. Hasanoğlan (Ankara) petrol sisteminin organik hidrojeokimyasal kanıtları. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi (hakemde)
  • Özdemir, A., 2018. Türkiye’nin iyotça zengin suları ve petrol potansiyeli, Selçuk Teknik Dergisi (hakemde)
  • Özdemir, A. ve Şahinoğlu, A., 2018. Ulukışla (Niğde) havzasının petrol potansiyeli. Düzce Üniversitesi Bilim ve Teknoloji Dergisi (hakemde)
  • Peters, K.E. and Moldowan, J.M., 1993. The Biomarker Guide, Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Englewood Cliffs, Jersey, Prentice Hall, 339-363
  • Peters, K.E., Fraser, T.H., Amris, W., Rustanto, B. and Hermanto, E., 1999. Geochemistry of crude oils fromeastern Indonesia. American Association of Petroleum Geologists Bulletin, 83, 1927-1942
  • Potter II, R. W., Harrington, P.A., Silliman, A.H. and Viellenave, J.H., 1996. Significance of geochemical anomalies in hydrocarbon exploration, in D. Schumacher and M. A. Abrams, eds., Hydrocarbon migration and its near-surface expression: AAPG Memoir 66, 431-439
  • Qiao, X., Zhang, Z., Yu, J. and Ye, X., 2008. Performance characteristics of a hybrid membrane pilot-scale plant for oilfield-produced wastewater. Desalination, 225(1-3),113–122
  • Riccardia, C. Di Filippoa, D., Pomataa, D., Incoronatoa, F., Di Basilioa, M., Papinib, M.P. and Spicaglia, S., 2008. Characterization and distribution of petroleum hydrocarbons and heavy metals in groundwater from three Italian tank farm. Science of the Total Environment, 393, 50 - 63
  • Robertson, A. 1998. Petroleum hydrocarbons. Arctic Monitoring and Assessment Programme (AMAP), Oslo, pp. 661-716
  • Sakroon, S.A., 2008. Effect of oilfield brine on groundwater quality in Marmul area, Sultanate of Oman. United Arab Emirates University, MSc. Thesis, 146 p.
  • Shahsavari, A.A., Khodaei, K., Rahele, H, Asadian, F. and Zamanzadeh, S.M., 2013. Distribution of total petroleum hydrocarbons in Dezful aquifer, Southwest of Iran. Arabian Journal of Geosciences, DOI 10.1007/s12517-013-0887-4
  • Stueber, A.M., Walter, L.M., Huston, T.J. and Pushkar, P., 1993. Formation waters from Mississippian-Pennsylvanian reservoirs, Illinois basin, USA: Chemical and isotopic constraints on evolution and migration. Geochimica et Cosmochimica Acta. 57, 163-784
  • Su, X., Lv, H., Zhang, W., Zhang, Y. and Jiao, X., 2013. Evaluation of petroleum hydrocarbon biodegradation in shallow groundwater by hydrogeochemical indicators and C, S-isotopes. Environ Earth Sci., 69, 2091-2101
  • Tedesco, S.A., 1995. Surface Geochemistry in Petroleum Exploration. Springer-Science+Business Media, BV., p. 206
  • Teng, Y., Feng, D., Song, L., Wang, J. and Li, J., 2013. Total petroleum hydrocarbon distribution in soils and groundwater in Songyuan oilfield, Northeast China. Environ. Monit. Assess. 185, 9559-9569
  • Thompson, J.G., 1982. Hydrocarbon source rock analyses of Pakawau Group and Kapuni Formation sediments, northwest Nelson and offshore South Taranaki, New Zealand. New Zealand Journal of Geology and Geophysics, 25(2), 141-148, DOI:10.1080/00288306.1982.10421406 Tissot, B.P. and Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, 699 p.
  • Tran, K.L. and Philippe, B., 1993. Oil and rock extract analysis. in Applied Petroleum Geochemistry (M.L., Bordenave, eds.), p. 373-394
  • Tullai, S., Tubbs, L. E. and Fehn, U., 1987. Iodine extraction from petroleum for analysis of 129I/I ratios by AMS. Nucl. Instrum. Methods Phys. Res. B, 29, 383-386
  • Veil, J.A., 2006. Comparison of two international approaches to controlling risk from produced water discharges. Paper presented at the 70th PERF meeting, Paris, France
  • Volkman, J.K. and Maxwell, J.R., 1986. Acyclic isoprenoids as biological markers. In: Biological Markers in the Sedimentary Record (R.B. Johns, eds.), Elsevier, New York; pp. 1-42
  • Waples, D.W., 1985. Geochemistry in Petroleum Exploration. International Human Resources Development Corp., 232 p.
  • Xie, X., Wang, Y. and Su, C., 2012. Hydrochemical and sediment biomarker evidence of the impact of organic matter biodegradation on arsenic mobilization in shallow aquifers of Datong basin, China. Water Air Soil Pollut., 223, 483-498
  • Yang, Z.H., Lien, P.J., Huang, W.S., Surampalli, R.Y. and Kao, C.M., 2015. Development of the risk assessment and management strategies for TPH-contaminated sites using TPH fraction methods. J. Hazard. Toxic Radioact. Waste. DOI: 10.1061/(ASCE)HZ.2153-5515.0000290
  • Zemo, D.A. and Foote, G.R., 2003. The technical case eliminating the use of the TPH analysis in assessing and regulating dissolved petroleum hydrocarbons in groundwater. Ground Water Monitoring & Remediation, 23(3), 95-104
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi