NİŞASTA ESASLI BİYOPLASTİK KAŞIK ATIKLARININ FUNGAL BİYOLOJİK PARÇALANABİLİRLİĞİNİN ARAŞTIRILMASI

Son zamanlarda, petrol esaslı plastiklerin aşırı ve bilinçsiz tüketimi nedeni ile çevresel ve ekonomik endişeler ortaya çıkmıştır. Bu endişeler, “biyoplastik” adı verilen ve yenilenebilir ham maddelerden üretilen çevre dostu plastiklerin geliştirilmesine imkân tanımıştır. Son yıllarda yapılan çalışmalar, biyoplastiğin mekanik ve fiziksel özelliklerinin geliştirilmesine ve maliyetinin azaltılmasına odaklanmış durumdadır. Biyolojik parçalanabilir olarak adlandırılması nedeni ile biyoplastiklerin doğada tamamen parçalanabilmesi beklenmektedir. Ancak literatürde, biyoplastiklerin biyolojik parçalanabilirliğine dair az sayıda çalışma mevcuttur. Bu çalışmada, bakterilerden daha dayanıklı olduğu bilinen funguslarla, en çok tüketilen biyoplastik türlerinden biri olan nişasta esaslı biyoplastik atığının parçalanabilirliği araştırılmıştır. Bu amaçla, beyaz çürükçül fungus türü olan Coriolus versicolor ile nişasta esaslı biyoplastik kaşık atığı, yarı katı fermantasyon koşullarında 93 gün boyunca inkübe edilmiştir. Toplam redükte şeker analizi sonuçları, toplam redükte şekerin fungusların nişasta esaslı biyoplastiği parçalaması ile arttığını, parçalama sonucunda oluşan şekerlerin fungus tarafından kullanılması ile de azaldığını göstermiştir. HPLC analiz sonuçları, C. versicolor’un nişasta esaslı biyoplastik kaşık atığının yapısındaki nişastayı, glikoza parçaladığını göstermiştir. Kütle kaybı analizleri ise C. versicolor’un yarı katı fermantasyon koşulları altında 93 günde nişasta esaslı biyoplastik kaşık atığının %20’sini parçalayabildiğini göstermiştir.

INVESTIGATION OF FUNGAL BIODEGRADATION OF STARCH BASED BIOPLASTIC SPOON WASTES

Recently, environmental and economic concerns have risen due to excessive and unconscious consumption of traditional plastics. These concerns have led to the development of environmentally friendly plastics produced from renewable raw materials called “bioplastic”. Recent studies have focused mainly on physical, mechanical characteristics and reduction in the cost. It was expected that bioplastics can be completely biodegraded in nature because of being called biodegradable. On the other hand, there are few studies on the biodegradability of bioplastics in the literature. In this study, one of the most consumed type starch-based bioplastics spoon wastes biodegradability was investigated with the fungus. For this purpose, the white rot fungus Coriolus versicolor and the starch-based bioplastic spoon wastes were incubated for 93 days under suspended solid fermentation conditions. Results of reduced sugar analyses showed that the reducing sugar was increased because of fungal attack on starch-based bioplastics and decreased by fungi because of using of these sugars for growth. The results of HPLC as the glucose content indicated that, starch in the structure of bioplastics were biodegraded to glucose. Weight loss analysis showed that starch-based bioplastic spoon waste was 20% biodegraded by C. versicolor in 93 days under suspended solid fermentation conditions.

___

  • Andersson, B.E., Welinder, L., Olsson, P.A., Olsson, S., Henrysson, T., 2000. Growth of inoculated white-rot fungi and their interactions with the bacterial community in soil contaminated with polycyclic aromatic hydrocarbons, as measured by phospholipid fatty acids, Bioresource Technology, 73(1), 29–36.
  • Association of Plastics Manufacturers in Europe, Plastics- The Facts 2017 Report, https://www.plasticseurope.org/application/files/5715/1717/4180/Plastics_the_facts_2017_FINAL_for_website_one_page.pdf, 08.29.2018
  • Averous, L,. 2004. Biodegradable multiphase systems based on plasticized starch: a review, J. Macromol. Sci. C Polym. Rev., 44, 231–274.
  • Be Miller, C., Whistler, R., 2009. Starch Chemistry and Technology, Elsevier Inc. USA.
  • Bertolini, A.C., 2010. Starches; Characterization, Properties and Applications, CRC Press.
  • Di Gregorio, B, E., 2009. Biobased performance bioplastic: Mirel. Chemistry & Biology 2009;16, DOI 10.1016/j.chembiol.2009.01.001.
  • Gonzalez-Gutierrez, J., Partal, P., Garcia-Morales, M., Gallegos, C. 2009. Development of highly-transparent protein/starch-based bioplastics, Bioresource Technology, 101(2010), 2007-2013.
  • Guohua, Z., Ya, L., Cuilan, F., Min, Z., Caiqiong, Z., Zongdao, C., 2006. Water resistance, mechanical properties and biodegradability of methylated-cornstarch/poly(vinyl alcohol) blend film, polymer degradation and stability, Polym. Degrad. Stab. 91(4), 703–711.
  • Hatakka, A., 1994. Lignin-modifying enzymes from selected white-rot fungi: Production and Role from in LigninDegradation, Fems Microbiology Rewievs, 13(2-3), 125-135.
  • Hsu, W., Hsu, T., Lin, F., Cheng, Y., Yang, J.P., 2013. Separation, purification, and α-glucosidase inhibition of polysaccharides from Coriolus versicolor LH1 mycelia, Carbohydrate Polymers, 92 (1), 297-306.
  • Huang, M., Zhang, S., 2011. starch degradation and nutrition value improvement in corn grits by solid state fermentation technique with Coriolus versicolor, Brazilian Journal of Microbiology 42, 1343-1348.
  • Iskandar, S., 2011. Graft Copolymerization of Methyl Methacrylate Monomer onto Starch and Natural Rubber Latex Initiated by Gamma Irradiation, Atom Indonesia 37, 1, 24 – 28
  • Ismail, N. A., Tahir S. M., Yahya N., Wahid, M. F.A., Khairuddin, N. E., Hashim, I., Rosli, N., Abdullah, M. A., Synthesis and Characterization of Biodegradable Starch-based Bioplastics, Materials Science Forum, 2016. (846): p. 673-678.
  • Jo, W.S., Kang, M.J., Choi, S. Y., Yoo, Y. B., Seok, S. J., Jung, H.Y., 2010. Culture Conditions for Mycelial Growth of Coriolus versicolor, Mycobiology, 38(3), 195–202.
  • Karana, E., 2012. Characterization of natural and high-quality materials to improve perception of bioplastics. Journal of Cleaner Production 37,316-325.
  • Karim, M., Daryaei M. G., Torkaman, J., Oladi, R., Ghanbary, M.A. T., Bari, E., Yilgor, N. ,2017. Natural decomposition of hornbeam wood decayed by the white rot fungus Trametes versicolor, Anais da Academia Brasileira de Ciências 89(4), 2647-2655.
  • Kirk, T.K., Schultz, E., Conners, W.J., Loreng, L.F., Zeikus, J.G., 1978. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium, Arch. Microbiol. 117, 277-285.
  • Levin, L., Forchiassin, F., Viale, A., 2005. Ligninolytic enzyme production and dye decolorization byTrametes trogii: application of the Plackett–Burman experimental design to evaluate nutritional requirements, Process Biochemistry 40 (3–4), 1381–1387.
  • Liao, Y.M., 1990. Nutritional and Environmental Conditions For The Growth Of Coriolus versicolor, A wood Decaying and Medical Fungus, Jour. Agric. Res. China, 39 (3): 190-203.
  • Luengo, J.M., Garcia, B., Sandoval, A., Naharro, G., Olivera, E.R., 2003. Bioplastics from microorganisms, Current Opinion in Microbiology, 6, 251–260.
  • Miller, G.L., 1959. Use of dinitrosalicylic acid reagent for determination or reducing sugar. Anal. Chem., 31, 426–428.
  • Mohameed, H. A., Abu-Jdayil, B., Eassa, A. M. 2006. Flow properties of corn starch–milk–sugar system prepared at 368.15 K, Journal of Food Engineering, 77(4), 958–964.
  • Mohanty, A. K., Misra, M., Drzal, L. T. 2002. Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World, Journal of Polymers and the Environment, 10(1-2), 19-26.
  • Patnaik, P., 2010. Handbook of Environmental Analysis, Second Edition. CRC Press Taylor & Francis Group, USA.
  • Philp, J.C., Ritchie, J., Guy, K., 2013a. Biobased plastics in a bioeconomy, Trends in Biotechnology, 31, 2, 65-67.
  • Philp, J.C., Bartsev, A., Ritchie, R.J., Baucher, M.A., Guy, K. 2013b. Bioplastics science from a policy vantage point, New Biotechnology 30(6), 635-646
  • Sagnelli, D., Hebelstrup, K.H., Leroy, E., Rolland-Sabaté, A., Guilois, S., Kirkensgaard, J.J.K., Mortensen, K., Lourdin, D., Blennow, A., 2016. Plant-crafted starches for bioplastics production, Carbohydrate Polymers, 152, 398-408.
  • Sarasa, J., Gracia, J.M., Javierre, C., 2008. Study of the biodisintegration of a bioplastic material waste. Bioresource Technology, 100, 3764-3768.
  • Sarikaya, E., Higasa, T., Adachi, M., Mikami, B., 2000. Comparison of degradation abilities of α- and β-amylases on raw starch granules, Process Biochemistry 35(7), 711-715.
  • Sinegani A. A. S., Emtiazi, G., 2006. The relative effects of some elements on the DNS method in cellulase assay, J. Appl. Sci. Environ. Mgt., 10(3), 93 – 96.
  • Singh, P., Sulaiman, O., Hashim, R., Peng, L. C., Singh, R. P., 2013. Evaluating biopulping as an alternative application on oil palm trunk using the white-rot fungus Trametes versicolor, International Biodeterioration & Biodegradation, 82, 96–103.
  • Siracusa, V., Rocculi, P., Romani, S., Dalla Rosa, M. 2008. Biodegradable polymers for food packaging: a review. Trends Food Sci. Technol.,19, 634–643.
  • Stevens, E.S. 2002. Green Plastics: An Introduction to the New Science of Biodegradable Plastics, (p.238) USA: Princeton University Press.
  • Wang, S., Lydon, K. A., White, E. M., Grubbs, J. B., Lipp, E. K., Locklin, J., Jambeck, J. R., 2018. Biodegradation of Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) Plastic under Anaerobic Sludge and Aerobic Seawater Conditions: Gas Evolution and Microbial Diversity, Environ. Sci. Technol. 52, (10), 5700-5709.