GERİ DÖNÜŞTÜRÜLMÜŞ VE TİCARİ OLARAK TEMİN EDİLEN TM TİTANYUM ALAŞIMLARININ DARBE DAYANIMININ İNCELENMESİ

Titanyum alaşımları yüksek kütle – dayanım oranı gibi özellikleri sayesinde, biyomedikal, askeri, spor ve havacılık gibi birçok endüstriyel alanda kullanılmaktadır. Birçok endüstriyel alanda tercih edilmesine rağmen, yüksek maliyeti ve düşük geri dönüşüm oranı titanyum alaşımı malzemelerin kullanım alanlarını kısıtlamaktadır. Bu çalışma kapsamında partikül boyut dağılımının, ticari ve geri dönüştürülmüş toz metal Ti-6Al-4V alaşımlarının darbe dayanımları üzerindeki etkileri araştırılmaya çalışılmıştır. Bu kapsamda -40 µm toz partikül boyutundaki TM numunelere Charpy darbe testi uygulanmış ve numunelerin mikroyapıları incelenmiştir. Sonuçlar -40  µm toz partikül boyutundaki numuneler için ticari toz ile üretilenlerin daha yüksek dayanım değerlerine ulaştığı göstermektedir.

COMPARISON OF IMPACT PROPERTIES OF RECYCLED AND COMMERCIALLY AVAILABLE PM TITAMIUM ALLOYS

Titanium alloys are used in many specific applicants such as biomedical, military, sporting goods and aerospace industry due to their high strength properties and low aspect ratio. Even though their outstanding properties, titanium alloys have low utilization rate and relatively low recycling ratio during manufacturing of Titanium parts. In order to determine its mechanical and impact properties for low-cost Ti-based alloy applications, powder size distribution and compacting pressure strongly affect the microstructural properties of the sintered Ti-6Al-4V alloy. This paper presents how the narrow particle size distribution affect the impact properties of both recycled and commercially available Ti-6Al-4V alloys. Below 40µm particle size distribution range of Ti-6Al-4V alloys were conducted on 3-point bending, Charpy impact test and microstructural evaluation. Results indicate that -40µm size distributed and recycled Ti-6Al-4V alloys show more brittle behaviour than commercial available alloys.

___

  • Aizawa T, Halada K, Gutowski TG. Mater. Trans. 2002; 43: 390–96.
  • Cao F, Chandran R, Kumar P. New approach to achieve high strength powder metallurgy Ti-6Al-4V alloy through accelerated sintering at β-transus temperature and hydrogenation-dehydrogenation treatment. Scripta Materialia. 2017; 130: 22–26.
  • Chino Y, Hoshika T, Lee JS, Mabuchi M. J. Mater. Res. 2006; 21: 754–60.
  • Frykholm R, Brash B. Press and Sintering of Titanium. Key Engineering Materials. 2016; 704: 369-377.
  • Froes, F.H., Eylon, D., 1985. Powder Metallurgy of Titanium Alloys—A Rewiew, Titanium Science and Technology. 1, 267-286.
  • Froes, F.H. Eylon, D., 1985. Titanium, Science and Technology, 1, 267, West Germany.
  • Gronostajski J, Marciniak H, Matuszak A. J. Mater. Process.Technol. 2000;106: 34–39.
  • Guitar A, Vigna G, and Luppo MI. Microstructure and Tensile Properties after Thermo Hydrogen Processing of Ti-6Al-4V. Journal of Mechanical Behavior of Biomedical Materials.2009;2: 156-163.
  • German RM. Powder Metallurgy Science. Princeton (NJ): Metal Powder Industries Federation; 1989.
  • German, R.M., 1996. Sintering Theory and Practice. Wiley, 568, USA.
  • Hill S. Titanium Revolution. New Scientist Magazine. 2001; 170: 2297.
  • Kateřina S, Kursa, M., Ivo S., 2014. Powder Metallurgy. University text book, Faculty of Metallurgy and Materials Engineering, VSB- Technical university of ostrava.
  • Lin WC, Ju PC, Chern-Lin JH. A Comparision of the Fatigue Behaviour of the Cast Ti 7.5Mo with Cp Titanium, Ti-6Al-4V and Ti-13Nb-13Zr Alloys. Biomaterials. 2005; 26: 2899-2907.
  • Lütjering G, Williams C. Titanium. Heidelberg: Springer-Verlag; 2003.
  • Lütjering G, Williams C. Engineering Materials and Processes. Springer; 2007.
  • McDonald DT, Lui EW, Palanısamy S, Dargusch MS, Xia K. Achieving Superior Strength and Ductility in Ti-6Al-4V Recycled from Machining Chips by Equal Channel Angular Pressing. Metalurgical and Materials Transactions A. 2014; 45A: 4090-4102.
  • MPIF, 2006. Standard test methods for metal powders and powder metallurgy products. Metal Powder Industries Federation, 118 USA.
  • Ustundag M., Öğütme ve HDH Yöntemleriyle Üretilen Ti-6Al-4V Tozlarının Sinter-HİP Yöntemiyle Sinterlenmesi ve Özelliklerinin İncelenmesi, 2018, SDÜ FBE, Doktora Tezi.
  • Oh JM, Roh KM, Lee BK, Suh CY, Kim W, Kwon H, Lim JW. Preparation of low oxygen content alloy powder from Ti binary alloy scrap by hydrogenation-dehydrogenation and deoxidation process. Journal of Alloys and Compounds. 2014; 593: 61-66.
  • Sarıtaş,.Toz metalurjisi, Makine Mühendisleri El Kitabı, 1994, Baskı MMO, Ankara, 1-2, 64-82.
  • Silva AAM, Santos JF, Strohaecker TR. Microstructural and mechanical characterisation of a Ti-6Al-4V/TiC/10p composite processed by the BE-CHIP method. Composites Science and Technology. 2005; 65: 1749–1755.
  • Tang HP, Qian M, Liu N, Zhang XZ, Yang GY, Wang J. Effect of Powder Reuse Times on Additive Manufacturing of Ti-6Al-4V by Selective Electron Beam Melting. Journal of the Minerals, Metals & Materials Society. 2015; 67: 1-12.
  • Upadhyaya, A., 2002. Powder metallurgy technology. Cambridge Int Science Publishing, 536, USA.
  • Yan Y, Nash GL, Nash P. Effect of density and pore morphology on fatigue properties of sintered Ti–6Al–4V. International Journal of Fatigue. 2013; 55: 81-91.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi