NİKEL (II) İYONLARININ ATIK ÇAY’A BİYOSORPSİYONU: DENGE, KİNETİK VE TERMODİNAMİK ÇALIŞMALARI

Bu çalışmada atık çay (AÇ) kullanılarak Ni(II) iyonunun biyosorpsiyonu araştırılmıştır. Ni(II) giderme veriminin (E) ve biyosorpsiyon kapasitesinin (qe) belirlenebilmesi amacıyla temas süresi, sıcaklık, pH, başlangıç Ni(II) derişimi ve AÇ dozu gibi çeşitli deney koşulları altında kesikli deneyler yapılmıştır. Biyosorpsiyonun ilk dakikalarda çok hızlı gerçekleştiği ve ilk 30 dk.’da dengeye ulaşıldığı tespit edilmiştir. Ayrıca pH’ın yükselmesi ile biyosorpsiyon veriminin arttığı ve pH 5–7 arasında en yüksek değerlerde olduğu ve çözelti sıcaklığının artmasıyla qe’nin de yükseldiği belirlenmiştir. Deneysel veriler kullanılarak hesaplanan R2, qden ve qhes değerlerine göre adsorpsiyon eşitliğin en iyi, Langmuir ve Temkin izoterm modelleri ile tanımlanmaktadır. Deney verileri Ni(II) iyonlarının AÇ’ye biyosorpsiyonunun ekzotermik bir reaksiyon olduğunu göstermektedir. Kinetik modeller kıyaslandığında, biyosorpsiyonun en iyi yalancı II. derece kinetik model tarafından tanımlandığı belirlenmiştir. Termodinamik parametreler adsorpsiyon işleminin AÇ tarafından Ni(II) iyonlarının uzaklaştırılmasında kullanılabileceğini göstermektedir. Ayrıca farklı çözücüler ile yapılan desorpsiyon çalışmasında AÇ’nin sorbent olarak yeniden kullanabilirliği belirlenmiştir.

BIOSORPTION OF NICKEL (II) IONS ONTO TEA WASTE: EQUILIBRIUM, KINETIC AND THERMODYNAMIC STUDIES

In this study, the biosorption of Ni (II) ions onto the tea waste (TW) was investigated. The batch experiments were carried out to determine the removal efficiency (E) and biosorption capacity (qe) of Ni (II) under various experimental conditions such as contact time, temperature, pH, initial Ni (II) concentration and TW dose. It was determined that the biosorption was very fast in the first minutes and the equilibrium was reached in the first 30 minutes. The biosorption efficiency increased with the increase of pH and the highest sorption of Ni(II) onto the TW was observed at the initial pH values between 5–7. The qe value increased with the increase of solution temperature. According to the R2 value, qexp and qcal, the adsorption equilibrium was well described by the Langmuir and Freundlich isotherm models. Experimental data show that the biosorption of Ni(II) ions onto the TW is an exothermic reaction. By the comparison of kinetic models, results demonstrated that the system was best described by the pseudo second–order kinetic model. Thermodynamic parameters show that the adsorption process can be used to remove Ni (II) ions by the TW. It was also revealed in the desorption studies conducted with different solvents that the TW could be reuse after desorption.

___

  • Ahluwalia, S.S. & Goyal, D., 2005. Removal of heavy metals by waste tea leaves from aqueous solution. Engineering in life Sciences, 5(2), 158–162.
  • Ahmady-Asbchin, S. & Bahrami, A.M., 2011. Nickel biosorption by immobilized biomass of Bacillus sp. from aqueous solution. Advances in Environmental Biology, 1656-1663.
  • Aikpokpodion, P.E., Ipinmoroti, R.R., & Omotoso, S.M., 2010. Biosorption of nickel (II) from aqueous solution using waste tea (Camella cinencis) materials. American–Eurasian Journal of Toxicological Sciences, 2(2),72–82.
  • Akar, T., Celik, S., Gorgulu Ari, A., & Tunali Akar, S., 2013. Nickel removal characteristics of an immobilized macro fungus: equilibrium, kinetic ve mechanism analysis of the biosorption. Journal of Chemical Technology & Biotechnology, 88(4), 680-689.
  • Aksu, Z., & Dönmez, G., 2006. Binary biosorption of cadmium (II) ve nickel (II) onto dried Chlorella vulgaris: Co-ion effect on mono-component isotherm parameters. Process Biochemistry, 41(4), 860-868.
  • Aksu, Z., 2002. Determination of the equilibrium, kinetic ve thermodynamic parameters of the batch biosorption of nickel (II) ions onto Chlorella vulgaris. Process Biochemistry, 38(1), 89–99.
  • Ali, I., Alharbi, O.M., Alothman, Z.A. & Badjah, A.Y., 2018. Kinetics, Thermodynamics, ve modeling of Amido Black dye photodegradation in water using Co/TiO2 nanoparticles. Photochemistry ve photobiology, 94(5), 935–941.
  • Alomá, I., Martín–Lara, M.A., Rodríguez, I.L., Blázquez, G. & Calero, M., 2012. Removal of nickel (II) ions from aqueous solutions by biosorption on sugarcane bagasse. Journal of the Taiwan Institute of Chemical Engineers, 43(2), 275–281.
  • Al-Samman, T., 2015. Effect of heavy metal impurities in secondary Mg alloys on the microstructure ve mechanical properties during deformation. Materials & Design (1980-2015), 65, 983-988.
  • Alzahrani, N.H., Alamoudi, K.H., & El-Gendy, M.M.A.A., 2017. Molecular Identification ve Nickel Biosorption with the Dead Biomass of Some Metal Tolerant Fungi. J Microb Biochem Technol, 9, 310-315.
  • Amarasinghe, B.M.W.P.K. & Williams, R.A., 2007. Tea waste as a low cost adsorbent for the removal of Cu ve Pb from wastewater. Chemical Engineering Journal, 132(1–3), 299–309.
  • Aslan, S., Yildiz, S., & Ozturk, M., 2018. Biosorption of Cu2+ ve Ni2+ ions from aqueous solutions using waste dried activated sludge biomass. Polish Journal of Chemical Technology, 20(3), 20-28.
  • Aslan, S., Yildiz, S., Ozturk, M., Polat, A., 2016. Adsorption of heavy metals onto waste tea. European Scientific Journal, Special Edition, 111-117.
  • Ayawei, N., Ebelegi, A.N. & Wankasi, D., 2017. Modelling ve interpretation of adsorption isotherms. Journal of Chemistry.
  • Banerjee, S., Chattopadhyaya, M.C., Srivastava, V. & Sharma, Y.C., 2014. Adsorption studies of methylene blue onto activated saw dust: kinetics, equilibrium, ve thermodynamic studies. Environmental Progress & Sustainable Energy, 33(3), 790–799.
  • Benguella, B., & Benaissa, H., 2002. Cadmium removal from aqueous solutions by chitin: kinetic ve equilibrium studies. Water research, 36(10), 2463–2474.
  • Bermúdez, Y.G., Rico, I.L.R., Bermúdez, O.G. & Guibal, E., 2011. Nickel biosorption using Gracilaria caudata ve Sargassum muticum. Chemical Engineering Journal, 166(1), 122–131.
  • Bhattacharyya, K.G., & Sharma, A., 2005. Kinetics ve thermodynamics of methylene blue adsorption on neem (Azadirachta indica) leaf powder. Dyes ve pigments, 65(1), 51–59.
  • Cay, S., Uyanık, A. & Özaşık, A., 2004. Single ve binary component adsorption of copper (II) ve cadmium (II) from aqueous solutions using tea–industry waste. Separation ve purification technology, 38(3), 273–280.
  • Chen, X., Huang, G. & Wang, J., 2013. Electrochemical reduction/oxidation in the treatment of heavy metal wastewater. Journal of Metallurgical Engineering (ME) Volume, 2(4).
  • Chen, Z., Ma, W., Han, M., 2008. Biosorption of nickel ve copper onto treated alga (Undaria pinnatifida): Application of isotherm ve kinetic models. Journal of hazardous materials, 155(1-2), 327-333.
  • Cheung, C.W., Porter, J.F., & McKay, G., 2001. Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water research, 35(3), 605–612.
  • Cojocaru, C., Diaconu, M., Cretescu, I., Savić, J., & Vasić, V., 2009. Biosorption of copper (II) ions from aqua solutions using dried yeast biomass. Colloids ve Surfaces A: Physicochemical ve Engineering Aspects, 335(1–3), 181–188.
  • Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M., & Thamaraiselvi, K., 2007. Biosorption of chromium ve nickel by heavy metal resistant fungal ve bacterial isolates. Journal of hazardous materials, 146(1-2), 270-277.
  • Ćurković, L., Trgo, M., Mioč, A.R., & Medvidović, N.V., 2009. Removal of Cu ve Pb ions from aqueous solutions by electric furnace slag: Kinetic ve thermodynamic aspects.
  • Çakmak, N.K., & Canbaz, G.T., 2020. TiO2 Nanopartikülü ve TiO2/Aktif Çamur Sentezi ile Sulu Çözeltiden Cu (II) İyonlarının Adsorpsiyonu. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 10(1), 86–98.
  • Das, B., Mondal, N.K., Bhaumik, R., & Roy, P., 2014. Insight into adsorption equilibrium, kinetics ve thermodynamics of lead onto alluvial soil. International Journal of Environmental Science ve Technology, 11(4), 1101–1114.
  • Demirbas, A, 1999, Evaluation of biomass materials as energy sources: Upgrading of tea waste by briquetting process. Energy sources, 21(3), 215-220.
  • Demirbaş, O., Alkan, M., & Doğan, M., 2002. The removal of Victoria blue from aqueous solution by adsorption on a low–cost material. Adsorption, 8(4), 341–349.
  • Dermentzis, K., Christoforidis, A., & Valsamidou, E., 2011. Removal of nickel, copper, zinc ve chromium from synthetic ve industrial wastewater by electrocoagulation. International Journal of Environmental Sciences, 1(5), 697–710.
  • Eligwe, C.A., Okolue, N.B., Nwambu, C.O., & Nwoko, C.I., 1999. Adsorption thermodynamics ve kinetics of mercury (II), cadmium (II) ve lead (II) on lignite. Chemical Engineering & Technology: Industrial Chemistry‐Plant Equipment‐Process Engineering‐Biotechnology, 22(1), 45-49.
  • Elmorsi, T.M., 2011. Equilibrium isotherms ve kinetic studies of removal of methylene blue dye by adsorption onto miswak leaves as a natural adsorbent. Journal of Environmental Protection, 2(06), 817.
  • Fu, F., & Wang, Q., 2011. Removal of heavy metal ions from wastewaters: a review. Journal of environmental management, 92(3), 407-418.
  • Güzel, F., Yakut, H., & Topal, G., 2008. Determination of kinetic ve equilibrium parameters of the batch adsorption of Mn (II), Co (II), Ni (II) ve Cu (II) from aqueous solution by black carrot (Daucus carota L.) residues. Journal of hazardous materials, 153(3), 1275–1287.
  • Hasar, H., 2003. Adsorption of nickel (II) from aqueous solution onto activated carbon prepared from almond husk. Journal of hazardous materials, 97(1–3), 49–57.
  • Heredia, J.B., & Martín, J.S., 2009. Removing heavy metals from polluted surface water with a tannin–based flocculant agent. Journal of hazardous materials, 165(1–3), 1215–1218.
  • Ho, Y.S., & McKay, G., 2000. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water research, 34(3), 735-742.
  • Ho, Y.S., Porter, J.F., & McKay, G., 2002. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel ve lead single component systems. Water, air, ve soil pollution, 141(1–4), 1–33.
  • Ho, Y.S., Wase, D.J., & Forster, C.F., 1995. Batch nickel removal from aqueous solution by sphagnum moss peat. Water Research, 29(5), 1327–1332.
  • Ipek, U., 2005. Removal of Ni (II) ve Zn (II) from an aqueous solutionby reverse osmosis. Desalination, 174(2), 161–169.
  • Iqbal, M., & Saeed, A., 2007. Production of an immobilized hybrid biosorbent for the sorption of Ni (II) from aqueous solution. Process Biochemistry, 42(2), 148-157.
  • Jamali, H.A., Mahvi, A.H., & Nazmara, S., 2009. Removal of cadmium from aqueous solutions by hazel nut shell. Adsorption, 2, 4.
  • Jianlong, W., Yi, Q., Horan, N., & Stentiford, E., 2000. Bioadsorption of pentachlorophenol (PCP) from aqueous solution by activated sludge biomass. Bioresource Technology, 75(2), 157–161.
  • Keränen, A., Leiviskä, T., Salakka, A., & Tanskanen, J., 2015. Removal of nickel ve vanadium from ammoniacal industrial wastewater by ion exchange ve adsorption on activated carbon. Desalination ve Water Treatment, 53(10), 2645–2654.
  • Kovacevic, F.Z., Sipos, L., Briski, F., Sipos, L., & Briski, F., 2000. Biosorption of chromium, copper, nickel ve zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions.
  • Kratochvil, D., & Volesky, B., 1998. Advances in the biosorption of heavy metals. Trends in biotechnology, 16(7), 291–300.
  • Krishnani, K.K., Meng, X., Christodoulatos, C., & Boddu, V.M., 2008. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk. Journal of hazardous materials, 153(3), 1222–1234.
  • Kumar, P.S., Ramalingam, S., Kirupha, S.D., Murugesan, A., Vidhyadevi, T., & Sivanesan, S., 2011. Adsorption behavior of nickel (II) onto cashew nut shell: Equilibrium, thermodynamics, kinetics, mechanism ve process design. Chemical Engineering Journal, 167(1), 122–131.
  • León, O., Muñoz–Bonilla, A., Soto, D., Pérez, D., Rangel, M., Colina, M., & Fernández–García, M. 2018. Removal of anionic ve cationic dyes with bioadsorbent oxidized chitosans. Carbohydrate polymers, 194, 375–383.
  • Lin, C.J., & Chang, J.E., 2001. Effect of fly ash characteristics on the removal of Cu (II) from aqueous solution. Chemosphere, 44(5), 1185–1192.
  • Lin, S.H., & Juang, R.S., 2002. Heavy metal removal from water by sorption using surfactant–modified montmorillonite. Journal of hazardous materials, 92(3), 315–326.
  • Liu, N., Lin, D., Lu, H., Xu, Y., Wu, M., Luo, J., & Xing, B., 2009. Sorption of lead from aqueous solutions by tea wastes. Journal of environmental quality, 38(6), 2260–2266.
  • Ma, H.F., Li, W., Han, Q.J., & Wang, J., 2013. Research on the Adsorption Kinetics ve Thermal Adsorption Model of Ni (Ⅱ) with Tea Dust [J]. Science Technology ve Engineering, 16.
  • Magdy, Y.H., Altaher, H., & Al Yaqout, A.F., 2020. Sustaınable Adsorptıve Removal Of Nıckel ve Chromıum Usıng An Eco–Frıendly Industrıal Waste: A Kınetıc Study. Journal of Chemical Technology & Metallurgy, 55(2).
  • Malkoc, E., & Nuhoglu, Y., 2005. Investigations of nickel (II) removal from aqueous solutions using tea factory waste. Journal of hazardous materials, 127(1–3), 120–128.
  • Malkoc, E., & Nuhoglu, Y., 2006a. Removal of Ni (II) ions from aqueous solutions using waste of tea factory: Adsorption on a fixed–bed column. Journal of Hazardous Materials, 135(1–3), 328–336.
  • Malkoc, E., & Nuhoglu, Y., 2006b. Fixed bed studies for the sorption of chromium (VI) onto tea factory waste. Chemical engineering science, 61(13), 4363–4372.
  • Malkoc, E., & Nuhoğlu, Y., 2003. The removal of chromium (VI) from synthetic wastewater by Ulothrix zonata.
  • Meena, A.K., Mishra, G.K., Rai, P.K., Rajagopal, C., & Nagar, P.N., 2005. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. Journal of hazardous materials, 122(1–2), 161–170.
  • Moawad, M.N., El–Sayed, A.A., & El–Naggar, N.A., 2020. Biosorption of cadmium ve nickel ions using marine macrophyte, Cymodocea nodosa. Chemistry ve Ecology, 1–17.
  • Moreira, V.R., Lebron, Y.A.R., Freire, S.J., Santos, L.V.S., Palladino, F., & Jacob, R.S., 2019. Biosorption of copper ions from aqueous solution using Chlorella pyrenoidosa: Optimization, equilibrium ve kinetics studies. Microchemical Journal, 145, 119–129.
  • Murthy, Z.V.P., & Chaudhari, L.B., 2008. Application of nanofiltration for the rejection of nickel ions from aqueous solutions ve estimation of membrane transport parameters. Journal of hazardous materials, 160(1), 70–77.
  • Nollet, H., Roels, M., Lutgen, P., Van der Meeren, P., & Verstraete, W., 2003. Removal of PCBs from wastewater using fly ash. Chemosphere, 53(6), 655–665.
  • Nuhoglu, Y., & Malkoc, E., 2009. Thermodynamic ve kinetic studies for environmentaly friendly Ni (II) biosorption using waste pomace of olive oil factory. Bioresource Technology, 100(8), 2375-2380.
  • Özacar, M., & Şengil, İ.A., 2005. A kinetic study of metal complex dye sorption onto pine sawdust. Process Biochemistry, 40(2), 565-572.
  • Özcan, A., Özcan, A.S., Tunali, S., Akar, T., & Kiran, I., 2005. Determination of the equilibrium, kinetic ve thermodynamic parameters of adsorption of copper (II) ions onto seeds of Capsicum annuum. Journal of hazardous materials, 124(1-3), 200-208.
  • Özdemir, S., Kilinc, E., Poli, A., Nicolaus, B., & Güven, K., 2009. Biosorption of Cd, Cu, Ni, Mn ve Zn from aqueous solutions by thermophilic bacteria, Geobacillus toebii sub. sp. decanicus ve Geobacillus thermoleovorans sub. sp. stromboliensis: Equilibrium, kinetic ve thermodynamic studies. Chemical Engineering Journal, 152(1), 195-206.
  • Öztürk, N.K., Öztürk, S., Sütçü, M., Sever, K., 2015. Fındık kabuğu ve evsel çay atığı katkılı yüksek yoğunluklu polietilen kompozitlerin fiziksel ve mekaniksel özelliklerin belirlenmesi”. XIX. Ulusal Mekanik Kongresi, Karadeniz Teknik Üniversitesi, Trabzon, Türkiye.
  • Padmavathy, V., 2008. Biosorption of nickel (II) ions by baker’s yeast: Kinetic, thermodynamic ve desorption studies. Bioresource Technology, 99(8), 3100-3109.
  • Padmavathy, V., Vasudevan, P., & Dhingra, S.C., 2003. Biosorption of nickel (II) ions on Baker’s yeast. Process Biochemistry, 38(10), 1389–1395.
  • Panda, G.C., Das, S.K., Bandopadhyay, T.S., & Guha, A.K., 2007. Adsorption of nickel on husk of Lathyrus sativus: behavior ve binding mechanism. Colloids ve Surfaces B: Biointerfaces, 57(2), 135–142.
  • Panneerselvam, P., Bala, V., Thinakaran, N., Baskaralingam, P., Palanichamy, M., & Sivanesan, S., 2009. Removal of nickel (II) from aqueous solutions by adsorption with modified ZSM–5 zeolites. Journal of Chemistry, 6(3), 729–736.
  • Panneerselvam, P., Morad, N., & Tan, K.A., 2011. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel (II) from aqueous solution. Journal of hazardous materials, 186(1), 160–168.
  • Papadopoulos, A., Fatta, D., Parperis, K., Mentzis, A., Haralambous, K.J., & Loizidou, M., 2004. Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion–exchange ve precipitation methods. Separation ve Purification Technology, 39(3), 181–188.
  • Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A., 2009. Adsorption of copper (II), chromium (III), nickel (II) ve lead (II) ions from aqueous solutions by meranti sawdust. Journal of Hazardous Materials, 170(2–3), 969–977.
  • Rao, M., Parwate, A.V., & Bhole, A.G., 2002. Removal of Cr6+ ve Ni2+ from aqueous solution using bagasse ve fly ash. Waste management, 22(7), 821–830.
  • Reddy, D.H.K., Ramana, D.K.V., Seshaiah, K., & Reddy, A.V.R., 2011. Biosorption of Ni (II) from aqueous phase by Moringa oleifera bark, a low cost biosorbent. Desalination, 268(1–3), 150–157.
  • Rizwan, M., Naz, A., Khan, A., Shah, W., Mujtaba, G., Syed, M., ... & Fatima, N., 2020. Role of Pretreatment in Adsorption of Cobalt, Mercury ve Nickel by Native Algae. In Frontiers in Water-Energy-Nexus—Nature-Based Solutions, Advanced Technologies ve Best Practices for Environmental Sustainability (pp. 521-524). Springer, Cham.
  • Sahu, S., Pahi, S., Sahu, J.K., Sahu, U.K., & Patel, R.K., 2020. Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon—an efficient bioadsorbent for methylene blue dye: equilibrium, kinetic, ve thermodynamic study. Environmental Science ve Pollution Research, 1–14.
  • Saini, S., Gill, J. K., Kaur, J., Saikia, H.R., Singh, N., Kaur, I., & Katnoria, J.K., 2020. Biosorption as Environmentally Friendly Technique for Heavy Metal Removal from Wastewater. In Fresh Water Pollution Dynamics ve Remediation (pp. 167–181). Springer, Singapore.
  • Sawalha, M.F., Peralta-Videa, J.R., Romero-González, J., & Gardea-Torresdey, J.L., 2006. Biosorption of Cd (II), Cr (III), ve Cr (VI) by saltbush (Atriplex canescens) biomass: thermodynamic ve isotherm studies. Journal of Colloid ve Interface Science, 300(1), 100-104.
  • Serencam, H, Uçurum, M, 2019. Taguchi Deney Tasarımı Kullanılarak Uçucu Kül ile Ni (Ii) Gideriminde Bazı Adsorpsiyon Parametrelerinin Etkinliğinin İrdelenmesi. Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi, 8(1), 336-344.
  • Shah, J., Jan, M.R., ul Haq, A., & Zeeshan, M., 2015. Equilibrium, kinetic ve thermodynamic studies for sorption of Ni (II) from aqueous solution using formaldehyde treated waste tea leaves. Journal of Saudi Chemical Society, 19(3), 301–310.
  • Shahwan, T., & Erten, H.N., 2002. Thermodynamic parameters of Cs+ sorption on natural clays. Journal of radioanalytical ve nuclear chemistry, 253(1), 115–120.
  • Shaidan, N.H., Eldemerdash, U., & Awad, S., 2012. Removal of Ni (II) ions from aqueous solutions using fixed–bed ion exchange column technique. Journal of the Taiwan Institute of Chemical Engineers, 43(1), 40–45.
  • Sheng, P.X., Ting, Y.P., Chen, J.P., & Hong, L., 2004. Sorption of lead, copper, cadmium, zinc, ve nickel by marine algal biomass: characterization of biosorptive capacity ve investigation of mechanisms. Journal of colloid ve interface science, 275(1), 131–141.
  • Shirzad Siboni, M., Samadi, M.T., Yang, J.K., & Lee, S.M., 2011. Photocatalytic reduction of Cr (VI) ve Ni (II) in aqueous solution by synthesized nanoparticle ZnO under ultraviolet light irradiation: a kinetic study. Environmental technology, 32(14), 1573–1579.
  • Shroff, K.A., & Vaidya, V.K., 2011. Kinetics ve equilibrium studies on biosorption of nickel from aqueous solution by dead fungal biomass of Mucor hiemalis. Chemical Engineering Journal, 171(3), 1234-1245.
  • Siddiqui, M.N., Ali, I., Asim, M., & Chanbasha, B., 2020. Quick removal of nickel metal ions in water using asphalt–based porous carbon. Journal of Molecular Liquids, 113078.
  • Tahir, S.S., & Rauf, N., 2003. Thermodynamic studies of Ni (II) adsorption onto bentonite from aqueous solution. The Journal of Chemical Thermodynamics, 35(12).
  • Thakur, L.S., & Parmar, M., 2013. Adsorption of heavy metal (Cu2+, Ni2+ ve Zn2+) from synthetic waste water by tea waste adsorbent. International Journal of Chemical ve Physical Sciences, 2(6), 6–19.
  • Thevannan, A., Mungroo, R., & Niu, C.H., 2010. Biosorption of nickel with barley straw. Bioresource technology, 101(6), 1776–1780.
  • Torab-Mostaedi, M., Asadollahzadeh, M., Hemmati, A., & Khosravi, A., 2013. Equilibrium, kinetic, ve thermodynamic studies for biosorption of cadmium ve nickel on grapefruit peel. Journal of the Taiwan Institute of Chemical Engineers, 44(2), 295-302.
  • Tran, V.T., Nguyen, D.T., Ho, V.T.T., Hoang, P.Q.H., Bui, P.Q., & Bach, L.G., 2017. Efficient removal of Ni 2 ions from aqueous solution using activated carbons fabricated from rice straw ve tea waste. J. Mater. Environ. Sci, 8(2), 426-437.
  • Tunç Dede, Ö, 2019. Potential Use Of Hazelnut Processing Plant Wastes As A Sorbent For The Simultaneous Removal Of Multi-Elements From Water. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 301-312.
  • Vakili, M., Rafatullah, M., Yuan, J., Zwain, H.M., Mojiri, A., Gholami, Z., ... & Cagnetta, G., 2020. Nickel ion removal from aqueous solutions through the adsorption process: a review. Reviews in Chemical Engineering, 1(ahead–of–print).
  • Villaescusa, I., Fiol, N., Martı́nez, M., Miralles, N., Poch, J., & Serarols, J., 2004. Removal of copper ve nickel ions from aqueous solutions by grape stalks wastes. Water research, 38(4), 992–1002.
  • Wahi, R., Kanakaraju, D., & Yusuf, N.A., 2010. Preliminary study on zinc removal from aqueous solution by sago wastes. Global Journal of Environmental Research, 4(2), 127–134.
  • Wan, S., Ma, Z., Xue, Y., Ma, M., Xu, S., Qian, L., & Zhang, Q., 2014. Sorption of lead (II), cadmium (II), ve copper (II) ions from aqueous solutions using tea waste. Industrial & Engineering Chemistry Research, 53(9), 3629–3635.
  • Wasewar, K.L., Atif, M., Prasad, B., & Mishra, I.M., 2008. Adsorption of zinc using tea factory waste: kinetics, equilibrium ve thermodynamics. CLEAN–Soil, Air, Water, 36(3), 320-329.
  • Weng, C.H., Lin, Y.T., Hong, D.Y., Sharma, Y.C., Chen, S.C., & Tripathi, K., 2014. Effective removal of copper ions from aqueous solution using base treated black tea waste. Ecological engineering, 67, 127–133.
  • Yang, S., Wu, Y., Aierken, A., Zhang, M., Fang, P., Fan, Y., & Ming, Z., 2016. Mono/competitive adsorption of Arsenic (III) ve Nickel (II) using modified green tea waste. Journal of the Taiwan Institute of Chemical Engineers, 60, 213–221.
  • Yildiz, S., 2018. Artificial neural network approach for modeling of Ni (II) adsorption from aqueous solution by peanut shell. Ecological Chemistry ve Engineering S, 25(4), 581-604.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi