KENTİÇİ KARAYOLU AĞLARINDA IŞIK SÜRELERİ DİKKATE ALINARAK YEDEK KAPASİTENİN ENİYİLENMESİ

Kentlerdeki trafik sıkışıklığı ekonomik, sosyal ve çevresel problemleri beraberinde getirmektedir. Bu problemlerin önüne geçmek isteyen yerel yönetimler, yol genişletmesi, şerit ilavesi ve kavşak yenileme çalışmaları gibi pahalı yatırımlar yaparak ulaşım talebini karşılamaya çalışmaktadır. Ancak bilindiği gibi kentiçi ulaşım ağlarında uygun ışık sürelerinin belirlenmesi ile yedek kapasite yaratılabilmektedir. Bu kapasitenin kullanılması neticesinde trafik sıkışıklığı ve beraberinde getirdiği olumsuz etkiler azaltılabilmektedir. Bu çalışmada kentiçi ulaşım ağlarındaki yedek kapasitenin enbüyüklenmesi probleminin çözümü için iki seviyeli bir model geliştirilmiştir. Üst seviyede Başlangıç-Varış (B-V) seyahat matrisi çarpanı enbüyüklenirken, alt seviyede trafik ataması problemi çözülmektedir. Geliştirilen modelin Allsop & Charlesworth test ağına uygulanması neticesinde yol ağındaki bağların kapasiteleri aşılmadan B-V seyahat matrisinin yaklaşık %16 artırılabileceği belirlenmiştir.

OPTIMIZATION OF RESERVE CAPACITY IN URBAN ROAD NETWORKS BASED ON TRAFFIC SIGNAL TIMINGS

Traffic congestion in cities brings economic, social and environmental problems. Local governments seeking to overcome these problems are trying to meet transportation demand by making expensive investments such as road extension, lane addition and intersection renewal. However, as is known, reserve capacity can be created by determining the appropriate signal timings in urban transportation networks. By using this capacity, traffic congestion and its negative effects can be reduced. In this study, a bi-level model is developed for solving the problem of the reserve capacity maximization in urban road networks. At the upper level, the Origin-Destination (O-D) demand multiplier is maximized and the traffic assignment problem is solved at the lower level. Applying the model to the Allsop & Charlesworth’s test network, it has been found that the O-D matrix can be increased by about 16% without exceeding the capacities of the links in the road network. 

___

  • Allsop, R.E., 1972. Estimating the traffic capacity of a signalized road junction. Transportation Research, 6, 245-255.
  • Allsop, R.E., Charlesworth, J.A., 1977. Traffic in a signal-controlled road network: an example of different signal timings including different routings. Traffic Engineering Control, 18 (5), 262-264.
  • Baskan, O., Ozan, C., 2017. Reserve Capacity Model for Optimizing Traffic Signal Timings with an Equity Constraint. H. Yaghoubi (Edt.), Highway Engineering, içinde (s.1-15), IntechOpen.
  • Baskan, O., 2014. Harmony Search Algorithm for Continuous Network Design Problem with Link Capacity Expansions. KSCE Journal of Civil Engineering, 18 (1), 273-283.
  • Bell, M.G.H., Shield, C.M., 1995. A log-linear model for path flow estimation. Y.J. Stephanedes, F. Filippi (Edt.), Proceedings of the 4th International Conference on the Applications of Advanced Technologies in Transportation Engineering, 695-699, Capri, Italy.
  • Ceylan, H., 2002. A genetic algorithm approach to the equilibrium network design problem. Doktora Tezi. Newcastle upon Tyne Üniversitesi, İngiltere.
  • Ceylan, H., Ceylan, H., 2012. A Hybrid Harmony Search and TRANSYT hill climbing algorithm for signalized stochastic equilibrium transportation networks. Transportation Research Part C, 25, 152-167.
  • Ceylan, H., Bell, M.G.H., 2004. Reserve capacity for a road network under optimized fixed time traffic signal control. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, 8 (2), 87-99.
  • Ceylan, H., Özcan, T., 2018. Otobüs ağlarındaki sefer sıklıklarının Armoni Araştırması Algoritması ile optimizasyonu: Mandl test ağı üzerine bir uygulama. Pamukkale University Journal of Engineering Sciences, 24(6), 1107-1116.
  • Chiou, S.-W., 2007. Reserve capacity of signal-controlled road network. Applied Mathematics and Computation, 190 (2), 1602-1611.
  • Chiou, S.-W., 2009. Optimization for signal setting problems using non-smooth techniques. Information Sciences, 179, 2985-2996.
  • Chiou, S.-W., 2014. Optimal signal-setting for road network with maximum capacity. Information Sciences, 273, 287-303.
  • Dell’Orco, M., Baskan, O., Marinelli, M., 2013. A Harmony Search Algorithm Approach for Optimizing Traffic Signal Timings. Promet Traffic&Transportation, 25 (4), 349-358.
  • Gao, K., Zhang, Y., Sadollah, A., Su, R., 2016. Optimizing urban traffic light scheduling problem using harmonysearch with ensemble of local search. Applied Soft Computing, 48, 359-372.
  • Geem, Z. W., Kim, J.H., Loganathan, G.V., 2001. A New Heuristic Optimization Algorithm: Harmony Search. Simulation, 76 (2), 60-68.
  • Geem, Z.W., 2005. Harmony search in water pump switching problem. In: Wang, L., Chen, K., Ong, Y.S. (Eds.), Lecture Notes in Computer Science, ICNC 2005, LNCS, vol. 3612. Springer-Verlag, Berlin, Germany, 751–760.
  • Geem, Z.W., 2006. Improved harmony search from ensemble of music players. In: Gabrys, B., Howlett, R.J., Jain, L.C. (Eds.), Lecture Notes in Artificial Intelligence, KES 2006, Part I, LNAI, vol. 4251. Springer-Verlag, Berlin, Germany, 86–93.
  • Geem, Z.W., 2007. Optimal scheduling of multiple dam system using harmony search algorithm. In: Sandoval, F. et al. (Eds.), Lecture Notes in Computer Science, IWANN 2007, LNCS, vol. 4507. Springer-Verlag, Berlin, Germany, 316–323.
  • Han, F., Cheng, L., 2017. Stochastic user equilibrium model with a tradable credit scheme and application in maximizing network reserve capacity. Engineering Optimization, 49 (4), 549-564.
  • Miandoabchi, E., Farahani, R.Z., 2011. Optimizing reserve capacity of urban road networks in a discrete network design problem. Advances in Engineering Software, 42 (12), 1041-1050.
  • Miandoabchi, Elnaz., Farahani R.Z., Szeto, W.Y., 2012. Bi-objective bimodal urban road network design using hybrid metaheuristics. Central European Journal of Operations Research, 20, 583-621.
  • Salcedo-Sanz, S., Manjarres, D., Pastor-Sanchez, A., Del Ser, J.D., Portilla-Figueras, J.A., Gil-Lopez, S., 2013. One-way urban traffic reconfiguration using a multi-objective harmony search approach. Expert Systems with Applications, 40, 3341-3350.
  • Wang, J., Deng W., Zhao, J., 2015. Road network reserve capacity with stochastic user equilibrium. Transport, 30 (1), 103-116.
  • Webster, F.V., Cobbe, B.M., 1966. Traffic signal. Road Research Technical Paper No. 56, HMSO, London.
  • Wong, S.C., Yang, H., 1997. Reserve capacity of a signal-controlled road network. Transportation Research Part B, 31, 397-402.
  • Xiao, H., Gao, J., Zou, Z., 2017. Reserve capacity model based on variable demand for land-use development control. Transportation Planning and Technology, 40 (2), 199-212.
  • Yagar, S., 1985. Addressing errors and omissions in paper on intersection capacity maximization. Transportation Research Part B, 19, 81-84.
  • Yang, H., Bell, M.G.H., Meng, Q., 2000. Modeling the capacity and level of service of urban transportation networks. Transportation Research Part B, 34 (4), 255-275.
  • Ziyou, G., Yifan, S., 2002. A reserve capacity model of optimal signal control with user-equilibrium route choice. Transportation Research Part B, 36, 313-323.
Mühendislik Bilimleri ve Tasarım Dergisi-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2010
  • Yayıncı: Süleyman Demirel Üniversitesi Mühendislik Fakültesi