YÜKSEK PERFORMANSLI ENERJİ YUTUCULAR İLE TAŞIT ÇARPIŞMA GÜVENLİĞİNİN GELİŞTİRİLMESİ

Trafikteki taşıt sayısının son yıllarda artması ile birlikte, trafik kazaları da önemli ölçüde artmıştır. Bu kazaların en yaygın türü de önden çarpışmadır. Bu çalışmada, enerji yutucuların çarpışma performansı sonlu elemanlar yöntemiyle ve deneysel olarak incelenmiştir. Farklı geometrilerdeki enerji yutucular tasarlanmış ve başlangıç modeli olarak ele alınan enerji yutucuya göre daha fazla enerji emebilen, reaksiyon kuvvetleri ve maliyetlerinin azaltıldığı yeni bir enerji yutucu modeli geliştirilmiştir. Çarpışma analizleri sonucunda, geliştirilen enerji yutucunun kütlesi 0,02 kg azaltılmış, özgül enerji emilimi ise 170 J/kg arttırılmıştır.

IMPROVING THE VEHICLE CRASH SAFETY WITH HIGH PERFORMANCE ENERGY ABSORBERS

Depending on the increasing number of vehicles in recent years, traffic accidents have been increasing significantly. Frontal crash is the most common types of vehicle accidents. In this study, crash performances of the energy absorbers were investigated using finite element method and experimentally. Energy absorbers with different geometry are designed and a new energy absorber which has better crash performance, peak force and cost than initial design is developed. The numerical crash analysis results show that the weight reduction is 0,02 kg and increasing the amount of the specific energy absorption is 170 J/kg for the best design.

___

  • 1. Emniyet Genel Müdürlüğü ve Türkiye İstatistik Kurumu. 2014. Karayolu Trafik Kaza İstatistikleri 2013, ISBN: 978-975-19-6244-7, TÜİK, Ankara.
  • 2. Nagel, G. 2005. "Impact and Energy Absorption of Straight and Tapered Rectangular Tubes," PhD Thesis, The School of Civil Engineering Queensland University, Queensland.
  • 3. Nia, A. A., Parsapour, M. 2014. "Comparative Analysis of Energy Absorption Capacity of Simple and Multi-Cell Thin-Walled Tubes with Triangular, Square, Hexagonal and Octagonal Sections," Thin-Walled Structures, vol. 74, p. 155-165.
  • 4. http://www.boronextrication.com/2013/07/03/2014-mazda-6-body-structure/, son erişim tarihi: 5 Ocak 2014.
  • 5. Alghamdi, A. A. A. 2001. "Collapsible Impact Energy Absorbers: An Overview," Thin-Walled Structures, vol. 39, p. 189-213.
  • 6. Chathbai, A. 2007. "Parametric Study of Energy Absorption Characteristic of a Rectangular Aluminum Tube Wrapped with E-Glass/Epoxy," Master Thesis, Wichita State University, Mechanical Engineering Department, Kansas, USA.
  • 7. Jin, S. Y. Altenhof, W. 2007. "Comparison of the Load/Displacement and Energy Absorption Performance of Round and Square Aa6061-T6 Extrusions under a Cutting Deformation Mode," International Journal of Crashworthiness, vol. 12 (3), p. 265-278.
  • 8. Yildiz, A. R., Solanki, K. 2012. "Multi-Objective Optimization of Vehicle Crashworthiness Using a New Particle Swarm Based Approach," International Journal of Advanced Manufacturing Technology, vol. 59 (1-4), p. 367-376.
  • 9. Guler, M. A., Cerit, M. E., Bayram, B., Gerçeker, B., Karakaya, E. 2010. "The Effect of Geometrical Parameters on the Energy Absorption Characteristics of Thin-Walled Structures under Axial Impact Loading," International Journal of Crashworthiness, vol 15 (4), p. 377-390.
  • 10. Zhang X., Zhang H., Wen Z. 2014. "Experimental and Numerical Studies on the Crush Resistance of Aluminum Honeycombs with Various Cell Configurations," International Journal of Impact Engineering, vol. 66, p. 48-59.
  • 11. Nia, A. A., Hamedani, J. H. 2010. "Comparative Analysis of Energy Absorption and Deformations of Thin Walled Tubes with Various Section Geometries," Thin-Walled Structures, vol. 48, p. 946-954.
  • 12. Song, J., Chen, Y., Lu, G. 2012. "Axial Crushing of Thin-Walled Structures with Origami Patterns," Thin-Walled Structures, vol. 54, p. 65-71.
  • 13. Karagiozova, D., Jones, N. 2008. "On the Mechanics of the Global Bending Collapse of Circular Tubes under Dynamic Axial Load—Dynamic Buckling Transition," International Journal of Impact Engineering, vol. 35, p. 397-424.
  • 14. Eyvazian, A., Habibi, M. K., Hamouda, A. M., Hedayati, R. 2014. "Axial Crushing Behavior and Energy Absorption Efficiency of Corrugated Tubes," Materials and Design, vol. 54, p. 1028-1038.
  • 15. Abramowicz, W., Jones N. 1984. "Dynamic Axial Crushing of Square Tubes," International Journal of Impact Engineering, vol. 2 (2), p. 179-208.
  • 16. Abramowicz, W., Jones, N. 1986. "Dynamic Progressive Buckling of Circular and Square Tubes," International Journal of Impact Engineering, vol. 4 (4), p. 243-270.
  • 17. Livermore Software Technology Corporation, Livermore. 2012. Ls-Dyna Keyword User’s Manual Volume I, California.