VİDA-SOMUN MEKANİZMALARININ DİKEY TAŞIMA PLATFORMLARINDA KULLANIMINA YÖNELİK TASARIM PARAMETRELERİNİN İNCELENMESİ

Bu çalışmada, vida somun mekanizmasının tasarım parametreleri incelenmiş ve dikey taşıma platformlarında kullanımından kaynaklanan problemlere yönelik çalışmalar yapılmıştır. Vida somun mekanizması tasarım parametrelerinin birbirlerinden nasıl etkilendiği incelenmiştir. Bu amaçla, tasarım parametrelerini belirleyen denklemler bilgisayar ortamına aktarılarak varyasyonlar oluşturulmuştur. Piyasada kullanılmakta olan bir ürüne ait tahrik sisteminin vida somun mekanizması bilgisayar ortamında modellenmiştir. Model üzerine referans yükler verilerek sonlu elemanlar yöntemiyle analiz yapılmıştır. Statik ve değişken zamanlı analiz yapılarak sonuçlar değerlendirilmiştir. Analiz sonuçlarıyla denklemlerden elde edilen sonuçlar kıyaslanmıştır. Elde edilen grafiklere dayanarak bu prensipte çalışan sistemler için iyileştirme tavsiyeleri verilmiştir. 

EXAMINATION OF THE DESIGN PARAMETERS FOR THE USE OF SCREW-NUT MECHANISM IN VERTICAL LIFT PLATFORM

This study investigates the design parameters of the screw and nut mechanisms have been studied to address problems arising from the use of vertical transport platform. Screw nut mechanism modelling parameters has been examined how they influenced each other. For this purpose, the design parameters defining equations transferred to a computer program and variations were generated. A drive system’s screw nut mechanisms which is being used in the market are modelled with computer aided program. Finite element analysis was conducted on the model given reference loads. Static and transient analysis was performed. The results obtained from equations and analysis was evaluated. It is given recommendations for improvement for this type of systems from different perspectives, based on resulting chart.

___

  • 1. Chen, J. S., Huang, Y. K., Cheng, C. C. 2004. “Mechanical Model and Contouring Analysis of High-Speed Ball-Screw Drive Systems with Compliance Effect,” International Journal of Advanced Manufacturing Technology, vol. 24, p. 241-250.
  • 2. Kim, M. S., Chung, S. C. 2006. “Integrated Design Methodology of Ball-Screw Driven Servomechanisms with Discrete Controllers. Part I: Modelling and Performance Analysis,” Mechatronics, vol. 16, p. 491-502.
  • 3. Poignet, P., Gautier, M., Khalil, W. 1999. “Modeling, Control and Simulation of High Speed Machine Tool Axis,” Proceedings of IEEE International Conference on Advanced Intelligent Mechatronics, 19-23 September 1999, p. 617-622, Atlanta, USA.
  • 4. Yang, T., Lin, C. S. 2004. “Identifying the Stiffness and Damping Parameters of a Linear Servomechanism,” Mechanics Based Design of Structures and Machines, vol. 32 (3), p. 283-304.
  • 5. Van Brussel, H., Sas, P., Istvan, N., De Fonseca, P., Van Den Braembussche, P. 2001. “Towards a Mechatronic Compiler,” IEEE/ASME Transactions on Mechatronics, vol. 6 (1), p. 90-105.
  • 6. Schafers, E., Denk, J., Hamann, J. 2006. “Mechatronic Modeling and Analysis of Machine Tools,” Proceedings of the 2nd International Conference on High Performance Cutting, 12-13 June 2006, p. 517-523, Vancouver, Canada.
  • 7. Pislaru, C., Ford, D. G., Holroyd, G. 2004. “Hybrid Modelling and Simulation of a Computer Numerical Control Machine Tool Feed Drive,” Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, vol. 218, p. 111-120.
  • 8. Varanasi, K. K., Nayfeh, S. A. 2004. “The Dynamics of Lead-Screw Drives: Low-Order Modeling and Experiments,” ASME Journal of Dynamic Systems, Measurement and Control, vol. 126, p. 388-396.
  • 9. Whalley, R., Ebrahimi, M., Abdul-Ameer, A. A. 2006. “Machine Tool Axis Dynamics,” Proceedings of IMechE Part C: Journal of Mechanical Engineering Science, vol. 220, p. 403-419.
  • 10. Argyris, J., De Donno, M., Litvin, F. L. 2000. "Computer Program in Visual Basic Language for Simulation of Meshing and Contact of Gear Drives and its Application for Design of Worm Gear Drive," Computer Methods in Applied Mechanics and Engineering, vol. 189, p. 595-612.
  • 11. Allotta, B., Angioli, F., Rinchi, M. 2001. “Constraints Identification for Vibration Control of Time-Varying Boundary Conditions Systems,” Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 8-12 July 2001, p. 606-611, Como, Italy.
  • 12. Erkorkmaz, K., Kamalzadeh, A. 2006. “High Bandwidth Control of Ball Screw Drives,” Annals of the CIRP, vol. 55 (1), p. 393-398.
  • 13. Zhou, Y., Peng, F., Chen, J. 2007. “Torsion Vibration Analysis of Lead-Screw Feed Drives with Changeable Table Position and Work-piece Mass,” Proceedings of IEEE International Conference on Mechatronics and Automation, 5-8 August 2007, p. 2194-2199, Harbin, China,
  • 14. Cuttino, J. F., Dow, T. A. 1997. “Contact between Elastic Bodies with an Elliptic Contact Interface in Torsion,” ASME Journal of Applied Mechanics, vol. 64, p. 144-148.
  • 15. Lin, M. C., Ravani, B., Velinsky, S. A. 1994. “Kinematics of the Ball Screw Mechanism,” ASME Journal of Mechanical Design, vol. 116, p. 849-855.
  • 16. Budynas, R., Nisbett, J. 2010. Shingley’s Mechanical Engineering Design, ISBN: 978-0-07-339820-4, Mcgram Hill, New York, USA, Example 8-1, p. 419-421.
  • 17. TSE-TS ISO 1122-2. 2006. Dişli Terimleri - Bölüm 2: Sonsuz Vida Dişli Geometrisi ile İlgili Tarifler (Definitions Related to Worm Gear Geometry).