Sabit Alanda ve Sabit Basınçta Karışımlı Ejektör Modellerinin Performans Değerlendirmesi

Soğutucu akışkanlarla ilgili çevresel düzenlemelerin gereklilikleri ve yüksek performans hedefleri soğutma ve iklimlendirme sistemlerindeki yenilikler için bir itici güç olmaktadır. Buhar sıkıştırmalı soğutma çevriminde yaygın olarak üstünde çalışılan performans arttırma yöntemlerinden biri de çevrime ejektör eklenmesidir. Ejektörün buhar sıkıştırmalı bir soğutma çevrimindeki uygulamaları yenilenebilir enerji veya atık ısıdan faydalanan harici ısı kaynaklı ejektörlü sistemler ve genleşme vanasındaki kısılma kayıplarını azaltan ejektör genleştiricili sistemler olmak üzere iki temel başlık altında sınıflandırılabilir. Bu çalışmanın konusu genleşme vanası yerine ejektör kullanarak kısılma kayıplarını azaltmayı amaçlayan ejektör genleştiricili soğutma sistemleridir. Bu çalışmadaki temel amaç sabit alanda ve sabit basınçta karışım olmak üzere iki farklı teoriye dayandırılan ejektör modellerinin ejektör genleştiricili soğutma çevriminde performans kıyaslamasını yapabilmektir. Literatürde karışım teorilerinin karşılaştırmaları ile ilgili olarak çeşitli uygulamalar için modeller oluşturulmuş ve yorumlanmıştır. Bu amaçları gerçekleştirebilmek için öncelikle sabit basınçta ve sabit alanda karışım teorilerine göre ejektör genleştiricili soğutma çevrimi Matlab® ortamında modellenmiştir ve bu modeller kullanılarak farklı düşük küresel ısınma potansiyeli (GWP) değerine sahip soğutucu akışkanlar için performans katsayısı (COP) karşılaştırmaları yapılmıştır. Soğutucu akışkanların termodinamik özellikleri için REFPROP veritabanı kullanılmıştır. Ayrıca hem sabit basınçta karışımlı hem de sabit alanda karışımlı ejektörlü çevrim modellerinde kritik bir parametre olan sekonder lüledeki (ikincil lüledeki) karışım öncesi akışkan basınçlarının toplam performans üzerindeki etkisi ve sebepleri tartışılmıştır. Bu basınçların belirlenmesi ile ilgili olarak literatürde kullanılan varsayımlar ortaya konulmuş ve modellerde kullanılmak üzere aralarından bir seçim yapılmıştır. Sistem performansını hesaplayabilmek için kurulan termodinamik modeller özellikle belirli tasarım parametrelerinin etkilerinin gözlemlenebilmesi açısından oldukça kısıtlayıcı olsa da kapsamlı hesaplamalı akışkanlar dinamiği (HAD) analizlerine sağlayacağı zemin açısından önem taşımaktadır. 

Performance Evaluations of the Constant Area and Constant Pressure Mixing Ejector Models

Environmental regulations regarding the refrigerants and high performance targets are the driving force for the innovations in the refrigeration and air conditioning systems. One of the performance improvement methods concerning the vapor compression refrigeration cycle is the implementation of the ejector. Applications of the ejectors in the vapor compression refrigeration cycle are categorized mainly into two groups as heat driven refrigeration cycles utilizing renewable or low-grade energy sources and ejector expansion refrigeration cycles decreasing the throttling losses in the expansion valve. The subject of this study is the ejector expansion refrigeration cycles utilizing ejector instead of the expansion valve to decrease the throttling losses. Main objective of this paper is making the performance comparison of the ejector expansion refrigeration cycles utilizing ejector models based on the constant-area and constant-pressure mixing theories. To accomplish these targets, ejector expansion refrigeration cycle has been modelled according to the constant-area and constantpressure mixing theories using Matlab® and coefficient of performance (COP) comparisons have been made for the refrigerants having low global warming potential (GWP) values via these constructed thermodynamic models. REFPROP database has been used for the thermodynamic properties of the refrigerants. By the way, the effects of the pressure of the primary and the secondary refrigerants in the suction nozzle (secondary nozzle) before mixing which is a critical parameter for both constant-area and constant-pressure mixing ejectors on the overall performance have been discussed and the main reasons have been focused. The assumptions used in the literature to define the pressure of the primary and secondary fluid before mixing have been displayed and evaluated according to the selection of the approach utilised in the established models. Although the thermodynamic models built for the performance calculation of the cycles provide limited results in terms of evaluating the effects of the design parameters, they are of great value to create a basis for the comprehensive computational fluid dynamics (CFD) analyses. 

___

  • 1. Elbel, S., Hrnjak, P. 2008. “Ejector Refrigeration: An Overview of Historical and Present Developments with an Emphasis on Air-Conditioning Applications,” International Refrigeration and Air Conditioning Conference, 14-17 July, Purdue University, USA.
  • 2. Kornhauser, A. A. 1990. “The Use of an Ejector as a Refrigerant Expander,” International Refrigeration and Air Conditioning Conference, Purdue University, USA.
  • 3. Official Journal of the European Union. 2006. Directive 2006/40/EC of the European Parliament and of the Council of 17 May 2006 Relating to Emissions from Air-Conditioning Systems in Motor Vehicles and Amending Council Directive 70/156/EEC.
  • 4. Official Journal of the European Union. 2014. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006.
  • 5. Molés, F., Navarro-Esbrí, J., Peris, B., Mota-Babiloni, A., Barragán-Cervera, A. 2014. “Theoretical Energy Performance Evaluation of Different Single Stage Vapour Compression Refrigeration Configurations Using R1234yf and R1234ze (E) as Working Fluids,” International Journal of Refrigeration, vol. 44, p. 141-150.
  • 6. Sarkar, J. 2012. “Ejector Enhanced Vapor Compression Refrigeration and Heat Pump Systems-A Review,” Renewable and Sustainable Energy Reviews, vol. 16, p. 6647–6659.
  • 7. Sumeru, K., Nasution, H., Ani, F. N. 2012. “A Review on Two-Phase Ejector as an Expansion Device in Vapor Compression Refrigeration Cycle,” Renewable & Sustainable Energy Reviews, vol. 16, p. 4927-4937.
  • 8. Elbel, S. 2011. “Historical and Present Developments of Ejector Refrigeration Systems with Emphasis on Transcritical Carbondioxide Air-Conditioning Applications,” International Journal of Refrigeration, vol. 34, p. 1545–1561.
  • 9. Elbel, S., Lawrence, N. 2016. “Review of Recent Developments in Advanced Ejector Technology,” International Journal of Refrigeration, vol. 62, p. 1-18.
  • 10. Li, D. Q., Groll, E. A. 2005. “Transcritical CO2 Refrigeration Cycle with Ejector-Expansion Device,” International Journal of Refrigeration, vol. 28, p. 766-773.
  • 11. Bilir, N., Ersoy, H. K. 2009. “Performance Improvement of the Vapor Compression Refrigeration Cycle by a Two-Phase Constant Area Ejector,” International Journal of Energy Research, vol. 33, p. 469-480.
  • 12. Nehdi, E., Kairouani, L., Bouzaina, M. 2007. “Performance Analysis of the Vapor Compression Cycle Using Ejector as an Expander,” International Journal of Energy Research, vol. 31, p. 364-375.
  • 13. Lawrence, N. 2012. “Analytical and Experimental Investigation of Two-Phase Ejector Cycles Using Low-Pressure Refrigerants,” M. Sc. Thesis, University of Illinois at Urbana-Champaign, in: Mechanical Engineering, Urbana, Illinois.
  • 14. Keenan, J. H., Neumann, E. P., Lustwerk, F. 1950. “An Investigation of Ejector Design by Analysis and Experiment,” ASME J. Appl. Mech., vol. 72, p. 299-309.
  • 15. Yapıcı, R., Ersoy, H. K. 2005. “Performance Characteristics of the Ejector Refrigeration System Based on the Constant Area Ejector Flow Model,” Energy Conversion and Management, vol. 46, p. 3117-3135.
  • 16. Sun, D. W., Eames, I. W. 1996. “Performance Characteristics of HCFC-123 Ejector Refrigeration Cycles,” International Journal of Energy Research, vol. 20, p. 871-885.
  • 17. Lemmon, E. W., Huber, M. L., McLinden, M. O. 2013. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
  • 18. The Linde Group. 2016. http://www.linde gas.com/tr/products_and_supply/refrigerants/index.html, son erişim tarihi: 10.08.2016.
  • 19. Wu, Y., Liang, X., Tu, X., Zhuang, R. 2012. “Study of R161 Refrigerant for Residential Air-Conditioning Applications,” International Refrigeration and Air Conditioning Conference, 16-19 July, Purdue University, USA.
  • 20. ANSI/ASHRAE Standard 34-2010 ASHRAE. 2010. Designation and Safety Classification of Refrigerants, American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc.,Atlanta, GA.
  • 21. Bivens, D. B., Minor, B. H. 1998. “Fluoroethers and Other Next Generation Fluids,” International Journal of Refrigeration, vol. 21, p. 567–576.
  • 22. Atmaca, A. U., Erek, A., Ekren, O. 2016. “Performance Analyses of Environmentally Friendly Low-GWP Refrigerants,” International Conference on Thermophysical and Mechanical Properties of Advanced Materials (THERMAM 2016), 1-3 September, Izmir, Turkey.
  • 23. Wang, F., Li, D. Y., Zhou, Y. 2016. “Analysis for the Ejector Used as Expansion Valve in Vapor Compression Refrigeration Cycle,” Applied Thermal Engineering, vol. 96, p.576–582.