OTOMATİK BESLEMELİ KÖMÜR KAZANLARINDA ALEV FORMU İLE YANMA VERİMİ ARASINDAKİ İLİŞKİNİN İNCELENMESİ

Kazanlarda ısıl verimin iyileştirilmesi konusu, artan yakıt fiyatları ve çevresel kaygılardan dolayı mühendisler için her geçen gün daha büyük önem arz etmektedir. Bu çerçevede, verimli ve temiz çalışan kazanların ortak özellikleri, yakıt/hava oranını ideal değerinde denetleyen bir kapalı çevrim kontrol sistemine sahip olmalarıdır. Bu bakımdan, son zamanlarda yanma odasının kameralar aracılığıyla görüntülenmesi ve görüntü işleme teknikleri ile yanma verimliliğinin analizi konuları ilgi çekmektedir. Bu çalışmada, bir baca gazı ölçüm cihazı ile hava fazlalık katsayısı gerçek zamanlı olarak ölçülürken, bununla eş zamanlı olarak kazanın yanma odası bir Charge-Coupled Device (CCD) kamera aracılığıyla görüntülenmiştir. Ardından, alev görüntüleri işlenmiş görüntü, kaynak matrisinin sonsuz normu, izi, rankı ve alev büyüklüğü değerleri elde edilip değerlendirilmiştir. Sonuçta, en az %95 yanma verimi için gerekli görüntü şartlarının sayısal değer aralıkları belirlenmiştir.
Anahtar Kelimeler:

Kazan, verim

INVESTIGATION OF RELATIONSHIP BETWEEN FLAME FORM AND COMBUSTION EFFICIENCY IN AUTOMATICALLY FEEDING COAL BOILERS

The issue of improving thermal efficiency in boilers has day by day importance for engineers because of rising fuel prices and environmental concerns. In this context, common point of the boilers working efficiently and cleanly is to have a closed loop control system controlling fuel/air ratio on its ideal value. From this point of view, recently, monitorizing of combustion chamber by using the cameras and the efficiency analyze of combustion with image processing techniques are trendy topics in this field. In investigation, while measuring the air excess coefficient by a flue gas measuring device in real time, simultaneously the combustion chamber of the boiler has been displayed by a Charge-Coupled Device (CCD) camera. Then infinity norm, trace and rank of image source matrice and size of flame are obtained and evaluated. In result, numerical value gaps of required image conditions are specified for %95 of combustion efficiency.
Keywords:

Boiler, efficiency,

___

  • 1. Astrom, K. J., Eklund, K. 1972. “A simplified Non-Linear Model of a Drum Boiler–Turbine Unit,” Int. Journal Control, vol.16, p. 145–9.
  • 2. BP Petrolleri AŞ. 2014. “Kazanlar,” http://www.bp.com/liveassets/bp_internet/retail/retail_turkey/STAGING/local_assets/downloads_pdfs/a/abp_kazanlar_tr.pdf, son erişim tarihi: 04.02.2014.
  • 3. Burkardt, H. 1992. “Image Analysis and Control of Combustion Processes,” The International Seminar on Imaging in Transport Processes, 25-29 May 1992, Athen.
  • 4. Docquier, N., Candel, S. 2002. “Combustion Control and Sensors: A Review,” Prog. Energy Combust Science, vol. 28, p. 107–50.
  • 5. Donne, M. S., Pike, A. W., Savry, R. 2001. “Application of Modern Methods in Power Plant Simulation and Control,” IEE Computer Control Journal, vol. 12 (2), p. 75–84.
  • 6. Huang, B., Luo, Z., Zhou, H. 2010. “Optimization of Combustion Based on Introducing Radiant Energy Signal in Pulverized Coal-Fired Boiler,” Fuel Processing Technology, vol. 91, p. 660–668.
  • 7. Huang, Y., Yan, Y., Lu, G., Reed, A. 1999. “On-Line Flicker Measurement of Gaseous Flames by Image Processing and Spectral Analysis,” Meas Science Technology, vol. 10, p. 726–33.
  • 8. Karaman, İ. 2010. “Soma Linyitinin Fiziksel Aktivasyonu ve Aktiflenmiş Ürüne Boyarmadde Adsorpsiyonu,” Yüksek Lisans Tezi, Ankara Üniversitesi.
  • 9. Kocaarslan, I. 1993. “Application of Adaptive Control Concept in a 750MW Coal Fired Power Plant,” In: 12th Triennial World Congress, 18-23 Jully 1993, Sydney, Australia, p. 711–8.
  • 10. Kohse-Hoinghaus, K., Barlow, R. S., Alden, M., Wolfrum, J. 2005. “Combustion at the Focus: Laser Diagnostic and Control,” Proc. Combust Inst. vol. 30, p. 89–123.
  • 11. Kouprianov, V., Chullabodhi, C., Kaewboonsong, W. 1999. “Cost Based Optimization of Excess Air for Fuel Oil/Gas-Fired Steam Boilers,” RERIC Int. Energy Journal, vol. 21 (2), p. 83–91.
  • 12. Lee, C. L., Jou, C. J. G. 2011. “Saving Fuel Consumption and Reducing Pollution Emissions for Industrial Furnace,” Fuel Process Technology, vol. 5, p. 2335–40.
  • 13. Lino, N., Tsuchino, F., Torii, S., Yano, T. 1998. “Timewise Variation of Turbulent Jet Diffusion Flame Shape by Means of Image Processing,” J. Flow Visual Image Process, vol. 5, p. 275–81.
  • 14. Lu, G., Yan, Y., Colechin, M. 2004. “A Digital İmaging Based Multifunctional Flame Monitoring System,” IEEE Trans Inst. Meas, vol. 53 (4), p. 1152–8.
  • 15. Onat, C. 2014. “WGC Based Robust and Gain Scheduling PI Controller Design for Condensing Boilers,” Advances in Mechanical Engineering, Doi: 10.1155/2014/659051, p. 1-13.
  • 16. Rees, N. W., Lu, C. X. 2002. “Some Thoughts on the Advanced Control of Electric Power Plants,” Trans. Inst. Meas. Control, vol. 24 (2), p. 87–106.
  • 17. Sujatha, K., Venmathi, M., Pappa, N. 2012. “Flame Monitoring in Power Station Boilers Using Image Processing,” ICTACT Journal on Image and Video Processıng, vol. 02, issue: 04, p. 427-434.
  • 18. Wojcik, W., Gromazsek, K., Kotyra, A., Lawicki, T. 2012. “Pulverized Coal Combustion Boiler Efficient Control,” Przegląd Elektrotechnıczny (Electrical Review), ISSN: 0033-2097, R. 88 NR 11b/2012: 316-319.
  • 19. Yamaguchi, T., Grattan, K. T. V., Uchiyama, H., Yamada, T. 1997. “A Practical Fiber Optic Air-Ratio Sensor Operating by Flame Color Detection,” Rev. Sci. Instrum. vol. 68, p. 197–202.