Nano ölçekte talaş kaldırma

Yüksek teknolojinin ihtiyaçlarını karşılamak için mikro ve nano (mikroalt ) ölçekte talaşlı imalat yapmak zorunlu hale gelmiştir. Günümüzde, tezgahların pozisyonlama hassasiyetlerinin gelişimi sonucu, sabit diskler, teleskop ve laser aynalar ile mercekleri, mikro-elektromekanik parçalar gibi yüksek hassasiyet isteyen ürünlerin tek kesen ağızlı elmas takımlar ya da çok kesen ağızlı elmas taşlama taşları kullanılarak mikro ve nano ölçekte imalatının gerçekleştirilmesi mümkündür. Nano ölçekte, malzemelerin plastik akış ve kırılmalarının atomistik olması nedeniyle, analizlerde sürekli ortamlar mekaniği ilkeleri kullanılamamaktadır. Nano ölçekte talaş kaldırma mekanizmaların ve parametrelerini incelemek için moleküler dinamik modelleme ve simülasyon kullanılmaktadır. Bu çalışmada, nanoteknoloji ve nano ölçekte talaş kaldırma konu edilmektedir. Moleküler dinamik kullanılarak nano ölçekte talaş kaldırma modellemesi ve simülasyonu konusundaki araştırmalar literatür bazlı verilmektedir.

Micro and nano (sub-micro) scale machining have become a necessity to provide the needs of high technology. Nowadays, as a result of the progresses of machine tool positioning accuracies, it is possible to produce high precision products like hard disks, telescope and laser mirrors and lenses, micro- electromechanic components, by using singlepoint diamond tools or multi-point grinding diamond tools. Principles of continuum mechanics cannot be applied to the analysis in nano-scale, because plastic flow and fracture of the materials are atomistic. Molecular dynamics modeling and simulation are used to investigate nano-scale machining mechanisms and parameters. In this paper, nanotechnology and nano-scale machining are devoted. Researches on the modeling and simulation of nano-scale machining by using molecular dynamics are given as a review literary based.

___

1. R. P. Feynman, "There's Plenty of Room at the Bottom - An Innovation to Enter a New Field of Physics" Ann. Meeting of the APS, California Institute of Technology, December 1959 2. N. Taniguchi, et. al., "On the Basic Concept of Nanotechnology" Proceedings of ICPE, Tokyo, 1974 3. N. Taniguchi, et al., "Nanotechnology: Integrated Processing Systems for Ultra-Precision and Ultra-Fine Products", Oxford University Press, 1996 4. J. Corbett, P.A. McKeown, G.N. Peggs, R. Whatmore, "Nanotechnology: International Developments and Emerging Products", Annals of CIRP vol. 49/2/2000, Keynote Papers sf. 523 5. E. Drexler, "Unbounding the Future: the Nanotechnology Revolution", Willam Morrow and Company, Inc. New York 1991 6. H. Shinno, H. Hashizume, Y. Ito, "Structural Configuration and Performances of Machining Environment-Controlled Ultraprecision Diamond Turning Machine 'Capsule' ", Annals of CIRP 41/1/1992, sf. 425 7. J. Corbett, et. al, "An Ultra Precision Machine Tool Demonstrating a Novel Vibration, Resistant, Structure", Precision Engineering - Nanotechnology, Proceedings fo the 1st International Euspen Conference, Shaker Verlag, Aachen, 1999, sf. 159 8. http://www.upm.pi.titech.ac.jp/capsule_eng.html 9. http://www.cranfield.ac.uk/sims/mem/dave_s/tetraform.html 10. H. Eda, E. Ohmura, M. Sahashi, T. Kobayashi, N. Ikawa, "Ultraprecise Machine Tool Equipped with a Giant Magnetostriction Actuator - Development of New Materials, TbxDy1-x(FeyMn1-y)n, and Their Appication", Annals of CIRP 41/1/1992, sf. 421 11. W. Gao, R. J. Hocken, J. A. Patten, J. Lovingood, "Experiments Using a Nano-Machining Instrument for Nano-Cutting Brittle Materials", Annals of CIRP 49/1/2000, sf. 439 12. Wei Gao, R. J. Hocken, J. A. Patten, J. Lovingood, D. A. Lucca, "Construction and Testing of a Nanomachining Instrument", Precision Engineering, Journal of the International Societies for Precision Engineering and Nnotechnology, 24(2000), 320-328 13. N. Taniguchi, "Nano-machining or processing systems with nanometre accuracies and sub- nanometre scattering widths or processing resolutions", Nanotechnology, Integrated Processing Systems for Ultra-Precision and Ultra-Fine Products, ed. N. Taniguchi, Oxford University Press, 1996, sf.15 14. P.S. Sreejith, B.K.A. Ngoi, "Material Removal Mechanisms In Precision Machining Of New Materials", IJMT&M 41, 2001 15. T. Sata, Y. Takeuchi, "Ultraprecision 3D Machining of Glass", Annals of the CIRP Vol. 45/1/1996 16. R. Rentsch, I. Inasaki, E. Brinksmeier, W. Preuss, O. Riemer, "Influence of Material Characteristics on the Micromachining Process", Materials Issues in Machining III and the Phsiscs of Machining III, 1996, sf. 65 17. S. Takashima, "Electron beam measuring systems: SEM and TEM", Nanotechnology, Intedrated Processing Systems for Ultra-Precision and Ultra-Fine Products, ed. N. Taniguchi, Oxford University Press, 1996, sf. 79 18. T.V. Vorburger, J.A. Dagata, G. Wilkening, K. Iizuka, E.G. Thwaite, P. Lonardo, "Industrial Uses of STM and AFM", Annals of CIRP 46/2/1997, sf. 597 19. K. Maekawa, A. Itoh, "Friction and Tool Wear in Nano-scale Machining - a Molecular Dynamics Approach", Wear 188(1995) 115 20. J. Belak, L. F. Stowers, "A Molecular Dynamics Model of the Orthogonal Cutting Process", Proceedings of ASPE Annual Conf., Rochester NY, 1990, sf. 76 21. W. G. Hoover, A. J. De Groot, C. G. Hoover, L. F. Stowers, T. Kawai, B. L. Holian, T. Boku, S. Ihara, J. Belak, "Large Scale Elastic-Plastic Indentation Simulation via Non-equilibrium Molecular Dynamics", Phys. Rev. A. 42 (10) (1990), sf. 5844 22. J. M. Haile, "Molecular Dynamics Simulation, Elementary Methods", John Wiley & Sons Inc., 1992 23. N. Ikawa, S. Shimada, H. Tanaka, G. Ohmori, "An atomistic analysis of nanometric chip removal as affected by toolwork interaction in diamond turning", Annals of CIRP 40/1/1991, sf. 551 24. S. Shimada, N. Ikawa, G. Ohmori, H. Tanaka, "Molecular synamic analysis as compared with experimental results of micromachining", Annals of CIRP 41/1/1992, sf. 117 25. S. Shimada, N. Ikawa, H. Tanaka, J. Uchikoshi, H. Yoshinaga, "Feasibility study on ultimate accuracy in microcutting using molecular dynamics simulation", Annals of CIRP 42/1/1993, sf. 91 26. S. Shimada, N. Ikawa, H. Tanaka, J. Uchikoshi, "Structure of micromachined surface simulated by molecular dynamics analysis", Annals of CIRP 43/1/1994, sf. 51 27. T. Inamura, N. Takezawa, N. Taniguchi, "Atomic scale cutting in a computer using crystal models of copper and diamond" Annals of CIRP 41/1/1992, sf. 121 28. T. Inamura, N. Takezawa, Y. Kumaki, "Mechanics and energy dissipation in nanoscale cutting", Annals of CIRP 42/1/1993, sf. 79 29. T. Inamura, N. Takezawa, Y. Kumaki, T. Sata, "On a possible mechanism of shear deformation in nanoscale cutting", Annals of CIRP 43/1/1994, sf. 47 30. R. Rentsch, I. Inasaki, "Molecular dynamics simulation for abrasive processes", Annals of CIRP 43/1/1994, sf. 327 31. R. Rentsch, I. Inasaki, "Investigation of surface integrity by molecular dynamics simulation", Annals of CIRP 44/1/1995, sf. 295 32. R. Komanduri, N. Chandrasekaran, L. M. Raff, "Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach", Wear 219 (1998) sf. 84 33. R. Komanduri, N. Chandrasekaran, L. M. Raff, "Orientation effects in nanometric cutting of single crystal materials: an MD simulation approach", Annals of CIRP 48/1/1999, sf. 67 34. R. Komanduri, N. Chandrasekaran, L. M. Raff, "MD simulation of nanometric cutting of single crystal aluminum - effect of crystal orientation and direction of cutting", Wear 242 (2000), sf. 60 35. R. Komanduri, N. Chandrasekaran, L. M. Raff, "MD simulation of exit failure in nanometric cutting", Mat. Sci. and Eng. A311 (2001), sf. 1 36. R. Komanduri, N. Chandrasekaran, L. M. Raff, "MD simulation of indentation and scratching of single crystal aluminum", Wear 240 (2000), sf. 113 37. R. Komanduri, N. Chandrasekaran, "MD simulation of atomic scale friction", Phys. Rev. B Vol. 61 (2000), af. 14007 38. Komanduri R., Chandrasekaran N., Raff L.M., "Molecular Dynamics Simulation of the Nanometric Cutting of Silicon", Phys. Rev. B vol. 81, no. 12, 2001 39. X. S. Han, B. Lin, S. Y. Yu, S. X. Wang, "Investigation of tool geometry in nanometric cutting by molecular dynamics simulation", Journal of Mat. Proc. Tech. 129 (2002) sf. 105 40. J. Shimizu, L.B. Zhou, H. Eda, "Simulation and experimental analysis of super high-speed grinding of ductile material", Journal of Mat. Proc. Tech. 129 (2002), sf. 19 41. B. Lin, S. Y. Yu, S. X. Wang, "An experimental study on molecular dynamics simulation in nanometer grinding", Journal of Materials Processing Technology 138 (2003) 484-488 42. K. Cheng, X. Luo, R. Ward, R. Holt, "Modeling and simulation of the tool wear in nanometric cutting", Wear 255(2003), 1427-1432