Model Tabanlı Tasarım ile Eş-Zamanlı Mühendislik: Mikro-Türbin Uygulama Örneği

Mühendislik sistemlerinin tasarımı ve geliştirilmesi karmaşık bir süreçtir ve birbirine bağlı çok sayıdaki sistem parametresinin en iyi değerlere ulaşması gerekmektedir. Özellikle gaz türbinleri gibi birçok farklı alt sistemlerden oluşan sistemlerin en verimli tasarım noktasını elde etmek farklı disiplinlerden uzmanların ortak çalışmasını gerektirir. Netice olarak, model tabanlı yazılım ortamlarında matematiksel modellerinin geliştirilmesi ve eş-zamanlı mühendislik süreci uygulanabilir. Bu süreç boyunca V-döngülü sistem mühendisliği sayesinde kavramsal tasarımın oluşturulup tartışılması, alt istemlerin detay tasarımların gerçekleştirilip entegrasyonu sonrası test simülasyonları ile optimum tasarım noktasının elde edilmesi mümkündür. Bu tasarım süreçleri, birbirleri ile etkileşimleri ve örnek bir mikro-türbin sisteminin geliştirilme süreci bu yayın içerisinde uygulama örneği olarak ele alınmaktadır.

Concurrent Engineering With Model Based Design: A Micro-Turbine Application

Design and development of engineering systems is a complex process, requiring the optimization of interconnected system parameters. Especially, the determination of the design point of systems like gas turbines with distinct subsystems requires the collaboration of cross disciplinary experts. Consequently, mathematical models in model-based-software environment and concurrent engineering process can be used, where the V-cycle within system engineering enables the development of conceptual design, detailed design of subsystems, integration and the consequent optimization of the design with simulations aggregating in an optimum design point. This design processes and associated trade-offs are explained here though a micro-turbine case study

___

  • Paterno, P. 1999. “Model-Based Design and Evaluation of Interactive Applications”, Springer-Verlag, Londra, s. 11.
  • Wang, S. and Shin, K. G. 2006. “Task Construction for Model-Based Design of Embedded Control Software”, IEEE Trans. Software Eng, Cilt 32, Sayı 4, sf. 254–265.
  • Horner, N. C. and Topper, J. S. 2013. “Model-Based Systems Engineering in Support of Complex Systems Development”, Johns Hopkins APL Technical Digest, Cilt 32, Sayı 1, sf. 419–432.
  • Plötzner, R., Hoppe, H. U., Fehse, E., Nolte, C. and Tewissen, F. 2001. “Model-based Design of Activity Spaces for Collaborative Problem Solving and Learning”, Proceedings of the European Conference on Artificial Intelligence in Education, Lizbon, Portekiz, sf. 372–378.
  • Heemels, W. P. M. H. and Muller, G. 2006. “Boderc: Model-based design of high-tech systems”, Eindhoven Embedded Systems Institute, Hollanda.
  • Yang, N., Hua, G. and Li-li, J. 2016. “Model-Based Design Methodology for Sampling Rate Converter”, International Journal of Multimedia and Ubiquitous Engineering, Cilt 11, Sayı 5, sf. 83–92.
  • Santos, M. M. D., Neme, J. H., Franco, F. R., Stevan, S. L., Torres, W., Lugli, A. B., Lagana, A. A. M. and Justo, J. F. 2015. “Model-Based Design of Exterior Lighting Control Function for Automobile – MIL”, SIL and RCP, International Journal of Innovative Computing, Information and Control, Cilt 11, Sayı 5, sf. 1495–1507.
  • Kirby, B., Zou, L., Cao, J., Kamwa, I., Heniche, A. and Dobrescu, M. 2011. “Development of a Predictive Out of Step Relay Using Model Based Design”, Innovative Smart Grid Technologies – ISGT Europe Conference, IEEE, sf. 1–6.
  • Chatterjee, S. and Kleijn, W. B. 2011. “Auditory Model-Based Design And Optimization Of Feature Vectors for Automatic Speech Recognition”, IEEE Transactions on Audio, Speech, and Language Processing, Cilt. 19, Sayı. 6, sf. 1813–1825.
  • Miyajima, T., Fujimoto, H. and Fujitsuna, M. 2013. “A Precise Model-Based Design Of Voltage Phase Controller for IPMSM”, IEEE Transactions on Power Electronics, Cilt. 28, Sayı. 12, sf. 5655–5664.
  • Ahmadian, M., Nazari,Z.J.,Nakhaee,N.andKostic,Z. 2005. “Model-Based Design and SDR”, 2nd IEEE/EURASIP Conference, sf. 19–99.
  • Solano, S. S., Jimenez, M. B., Toro, E. D., Jimenez, P. B. and Baturone, I. 2013. “Model-Based Design Methodology for Rapid Development of Fuzzy Controllers on FPGAs”, IEEE Transactions on Industrial Informatics, Cilt 9, Sayı 3, sf. 1361–1370.
  • Fu, Y. and Gu, X. 1997. “Discrete Maths And Its Application”, Publishing House of Electrical Industry, Beijing, China.
  • Quan, W. and Jianmin, H. 2006. “A Study on Collaborative Mechanism for Product Design in Distributed Concurrent Engineering”, Proceedings of the 7th International Conference on Computer-Aided Industrial Design and Conceptual Design - CAIDCD, sf. 1–5.
  • Abdalla, H. S. 1999. “Concurrent Engineering for Global Manufacturing”, International Journal of Production Economics, Cilt. 60–61, sf. 251–260.
  • Ma, Y., Chen, G. and Thimm, G. 2008. “Paradigm Shift: Unified and Associative Feature-based Concurrent Engineering and Collaborative Engineering”, Journal of Intelligent Manufacturing, Cilt 19, Sayı 6, sf. 625–641.
  • Krishman, V. 1996. “Managing The Simultaneous Execution of Coupled Phases in Concurrent Product Development”, IEEE Transaction on Management, Cilt 43, Sayı 2, sf. 210–217.
  • Assine, A., Falkenburg, D., and Chelst, K. 1999. “Engineering Design Management: An Information Structure Approach”, International Journal of Product Research, Cilt 37, Sayı 13, sf. 2957–2975.
  • Tang, D., Cheng, L., Li, Z., Li, D. and Zhang, S. 2000. “Re-Engineering of The Design Process for Concurrent Engineering”, Computers and Industrial Engineering, Cilt 38, Sayı 4, sf. 479–491.
  • Kusiak, A. 1993. “Concurrent Engineering: Automation, Tools and Techniques”, John Wiley and Sons.
  • Rosenblatt, A. And Watson, G. 1991. “Concurrent Engineering”, IEEE Spectrum, sf. 22–37.
  • Mani, M., Manikandan, K. and Manikandan, M. 2015. “Design for Manufacturing Based On Concurrent Engineering”, International Journal of Innovative Research in Science, Engineering and Technology, Cilt 4, Sayı 2, sf. 128–131.
  • Wolf, W. 2001. “Computers as Components: Principles of Embedded Computing System”, Elsevier, Burlington, MA.
  • Sullivan, W. G. and Parsaei, H. R. 1993. “Concurrent Engineering: Contemporary Issues and Modern Design Tools”, Chapman and Hall.
  • Bahler, D., Bowen, J., O’Grady, P. and Young, R. E. 1990. “Issues in Design/Manufacturing Integration”, Winter Annual Meeting of the ASME, Dallas, TX, November 25-30, sf. 59–67.
  • Sobek, D. K., Ward, A. C. and Liker, J. K. 1999. “Toyota’s Principles of Set-Based Concurrent Engineering”, MITSloan Management Review, Cilt 40, Sayı 2, sf. 67–83.
  • Taylor A. 1997. “How Toyota Defies Gravity”, Fortune, Cilt 136, sf. 100–108.
  • Ivanov, A., Noca, M., Borgeaud, M., Felloni, F., Guzman, E., Fueglistaler, A., Gallay, S. and Triguero-Baqtista, A. 2010. “Concurrent Design Facility at the Space Center EPFL”, SECESA.
  • ESA, 2011. “The ESA Concurrent Design Facility: Concurrent Engineering Applied to Space Mission Assessments”, http://esamultimedia.esa.int/docs/cdf/CDF-INFOPACK-2011.pdf, son erişim tarihi: 24.04.2017.
  • V-Modell®XT, 1997. “Limits of the V Model”, http://v-modell.iabg.de/XThtmleng/index.html, son erişim tarihi: 24.04.2017.
  • Forsberg, K. and Mooz, H. 1991. “The Relationship of System Engineering to the Project Cycle”, Proceedings of the First Annual Symposium of National Council on System Engineering, sf. 57–65.
  • Forsberg, K., Mooz, H. and Cotterman, H. 2005. “Visualizing Project Management”, 3. baskı, John Wiley and Sons, New York, Amerika Birleşik Devletleri.
  • DeSpautz, J., Kovacs, K. S. and Werling, G. 2008. ”GAMP Standards For Validation of Automated Systems”, Pharmaceutical Processing.
  • Federal Highway Administration (FHWA), 2005. “Clarus Concept of Operations”, Publication Sayı FHWA-JPO-05-072.
  • Narang, R. 2015. “Software Engineering - Principles and Practices”, Mc-Graw – Hill, New York, Amerika Birleşik Devletleri.
  • Sobkiw, W. 2008. “Sustainable Development Possible with Creative System Engineering”, Cassbeth.

  • Defense AT&L, 2006. “A New Systems Engineering Model and an Old”, Familiar Friend; Figure 2 V-9 Process Interactions, p. 51, son erişim tarihi: 24.04.2017.
  • International Council On Systems Engineering (INCOSE), 2007. “Systems Engineering Handbook Version 3.1”, sf. 3.3 – 3.8.
  • Lawson, R. J. May 1993, “Computational Modeling of an Aircraft Engine Combustor to Achieve Target Exit Temperature Profiles”, ASME 1993 International Gas Turbine and Aeroengine Congress and Exposition.
  • Eccles, N. C. and Priddin, C. H., Accelerated, Sep 1999. “Combustion Design using CFD”, 14th International Symposium on Air Breathing Engines.