Ada Tipi Solenoid Valflerde Akış Analizi Yardımı ile Tasarım Parametrelerinin Belirlenmesi

Pnömatik kontrol alanında kullanılan solenoid valflerde oluşan iç akışların incelendiği bu çalışmada, valf pistonunun iki farklı konumu sonucunda oluşan ve akışkanın izlediği A ve B hatlarında, hat boyunca meydana gelen basınç değişiklikleri ve hız değişimleri analiz edilmiştir. A ve B hatları içinde valf üzerinde bazı tasarım değişiklikleri yapılarak bunların etkileri gözlenmiştir. Tasarım iyileştirmeleri ile sağlanan hız ve basınç dağılımında gözlenen değişiklikler, valfte oluşan akış kayıplarının azaldığı şeklinde yorumlanmıştır.
Anahtar Kelimeler:

Valf adası, CFD

Determination of Design Parameters in Solenoid Valves Groups By Means of Flow Analysis

In this study, the flow characteristics of a solenoid valve used in the pneumatic controls were analysed and the pressure and velocity changes along the line in the A and B lines which are formed as a result of two different positions of the valve piston are introduced. Some design changes were made on the valve in lines A and B and their effects were observed. The changes observed in the speed and pressure distribution provided by the design improvements were interpreted as an improvement in the flow losses occurring in the valve.
Keywords:

Valve groups, CFD,

___

  • Lisowski, E., Czyżycki, W., Rajda, J. 2013. Three dimensional CFD analysis and experimental test of flowforce acting on the spool of solenoid operated directional control valve. Energy Conversion and Management, 70: 220–229.
  • Ye, Y., Chen-Bo, Y., Xing-Dong, Y., Wei-jinZhou, L., Feng-feng, Y. 2014. Effects of groove shape of notch on the flow characteristics of spool valve, Energy Conversion and Management, vol. 86, 1091-1101.
  • Blasiak, S., Takosoglu, J. E., Laski, P. 2014. Flow rate analysis of 3/2 directional pneumatic valve by means of Ansys Cfx software. Transactions of the VŠB – Technical University of Ostrava, Mechanical Series, LX (2).
  • Frosina, E., Senatore, A., Buono, D. 2015. 3D CFD Transient Analysis of the Forces Acting on the Spool of a Directional Valve. Energy Procedia, 81: 1090 – 1101.
  • Blasiak, S., Takosoglu, J. E., Laski, P. A., Pietrala, D. S., Zwierzchowski, J., Bracha, G., Nowakowski, L., Blasiak, M. 2017. Experimental and Simulation Flow Rate Analysis of the 3/2 Directional Pneumatic Valve. EPJ Web of Conferences, 143: 02008.
  • Frosina, E., Marinaro, G., Senatore, A., Pavanetto, M. 2018. Numerical and Experimental Investigation For the Design of a Directional Spool Valve. Energy Procedia, 148: 274–280.
  • Kaya, F., Karagöz İ. 2007. Girdaplı Akışlarda Türbülans Modellerinin Uygunluğunun İncelenmesi, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 12, Sayı 1, 85-96. Yakhot, V., Orszag, S. A. 1986. Renormalizatıon Group Analysis of Turbulence. I. Basic Theory, Journal of Scientific Computing, 1(1), 3-51.
  • Moore M. E., Mcfarland A. R. 1993. Performance Modelling of Single-Inlet Aerosol Sampling Cyclones; Environmental Science and Technology, 27, 1842-1848.
  • Yakhot V., Orszag, S. A., Thangam, S., Gatski, T. B., Speziale, C. G. 1992. Development of Turbulence Models For Shear Flows by a Double Expansion Technique, Physics of Fluids A, 4, 1510-1520.