Küresel Enerji Tüketimi Bağlamında Mikro Kojenerasyon Sistemlerinin Teknik ve Ekonomik Değerlendirilmesi

Mikro kojenerasyon sistemlerine olan ilgi gün geçtikçe artmaktadır. Mikro kojenerasyon sistemleri, tek bir enerji kaynağından aynı anda güç ve ısı sağlar. Konvansiyonel sistemlerde güç üretiminde atık ısıdan yararlanılmazken kojenerasyon sistemlerinde atık ısıdan faydalanılır. Böylece toplam sistem verimliliği konvansiyonel güç üretim sistemlerine kıyasla artar. Sistem verimliliğinin artmasıyla birlikte enerji tüketimi, emisyonlar ve enerji maliyetleri kayda değer bir şekilde azalır. Bu çalışmada, enerji tüketiminin dünyadaki ve Türkiye’deki son 5 yıllık durumları (2011-2015) ile ilgili veriler elde edilerek genel değerlendirmeler yapılmış, akabinde mikro kojenerasyon sistemleri araştırılarak sistemlerin birbirleriyle kıyaslamaları yapılmıştır. Bu bağlamda, içten yanmalı motor, dıştan yanmalı motor, mikro türbin ve yakıt hücresi bazlı mikro kojenerasyon sistemleri sistematik olarak tanıtılmıştır. Son olarak, literatürdeki ve piyasadaki sistem örnekleriyle ilgili teknik ve ekonomik detaylar verilerek bu kapsamda değerlendirmeler yapılmıştır.

Technical and Economical Evaluation of Micro-Cogeneration Systems in the Context of Global Energy Consumption

The popularity of micro-cogeneration systems is increasing day by day on the market. Microcogeneration systems provide power and heat at the same time from the single energy source, in this way the total system efficiency increases compared to conventional power generation systems. In conventional systems waste heat is not used in power generation but waste heat is used in cogeneration systems. With the increase of the system efficiency, energy consumption, emissions, and energy costs reduce notably. In this study, the data related to energy consumption in the last 5 years (2011-2015) in the world and in Turkey were obtained and general evaluations were made, in turn micro-cogeneration systems were investigated and compared with each other. In this regard, internal combustion engine, external combustion engine, micro turbine and fuel cell based microcogeneration systems were introduced systematically. Finally, technical and economical details of some aforementioned system samples from the literature and the market were given and evaluated in the context.

___

  • 1. Harrison, J., Redford, S. 2001. Domestic CHP. What are the Potential Benefits? Report for the Energy Saving Trust, EA Technology Limited, Capenhurst.
  • 2. European Parliament and European Council. 2004. Directive 2004/8/EC of the European Parliament and of the Council of the 11 February 2004 on the Promotion of Cogeneration Based on the Useful Heat Demand in the Internal Energy Market and Amending Directive 92/42/EEC, Official Journal of the European Union.
  • 3. Fuentes-Cortésa, L. F., Ávila-Hernándezb, A., Serna-Gonzáleza, M., Ponce-Ortegaa, J. M. 2015. “Optimal Design of CHP Systems for Housing Complexes Involving Weather and Electric Market Variations,” Applied Thermal Engineering, vol. 90, p. 895-906.
  • 4. Koç, E., Şenel, M. C. 2013. “Dünyada ve Türkiye’de Enerji Durumu–Genel Değerlendirme,” Mühendis ve Makina Dergisi, cilt 54, sayı 639, s. 32-44.
  • 5. Koç, E., Kaya, K. 2015. “Enerji Kaynakları–Yenilenebilir Enerji Durumu,” Mühendis ve Makina Dergisi, cilt 56, sayı 668, s. 36-47.
  • 6. BP Statistical Review of World Energy. 2016. British Petroleum (BP), London, UK.
  • 7. http://www.exeterrenewables.co.uk/micro-chp, son erişim tarihi:21.04.2016.
  • 8. Cervone, A., Romito, D. Z., Santini, E. 2011. “Technical and Economic Analysis of a Micro-tri/Cogeneration System with Reference to the Primary Power Source in a Shopping Center,” International Conference on Clean Electrical Power (ICCEP), 14-16 June 2011, Italy, DOI: 10.1109/ICCEP.2011.6036379, IEEE, p. 439-445.
  • 9. Possidente, R., Roselli, C., Sasso, M., Sibilio, S. 2006. “Experimental Analysis of MicroCogeneration Units Based on Reciprocating Internal Combustion Engine,” Energy and Buildings, vol. 38, no. 12, p.1417-1422.
  • 10. Magno, A., Mancaruso, E., Vaglieco, B. M. 2015. “Effects of a Biodiesel Blend on Energy Distribution and Exhaust Emissions of a Small CI Engine,” Energy Conversion and Management, vol. 96, p. 72-80.
  • 11. Muccillo, M., Gimelli, A. 2014. “Experimental Development, 1D CFD Simulation and Energetic Analysis of a 15 kw Micro-CHP Unit Based on Reciprocating Internal Combustion Engine,” Applied Thermal Engineering, vol. 71, no. 2, p. 760-770.
  • 12. Asaee, S. R., Ugursal, V. I., Beausoleil-Morrison, I. 2015. “Techno-Economic Evaluation of Internal Combustion Engine Based Cogeneration System Retrofits in Canadian Houses – A Preliminary Study,” Applied Energy, vol. 140, p. 171-183.
  • 13. Cioccolanti, L., Savoretti, A., Renzic, M., Caresana, F., Comodi, G. 2015. “Design and Test of a Single Effect Thermal Desalination Plant Using Waste Heat From m-CHP Units,” Applied Thermal Engineering, vol. 82, p. 18-29.
  • 14. Damirchi, H., Najafi, G., Alizadehnia, S., Ghobadian, B., Yusaf, T., Mamat, R. 2015. “Design, Fabrication and Evaluation of Gamma-Type Stirling Engine to Produce Electricity from Biomass for the Micro-CHP System,” Energy Procedia, vol. 75, p. 137-143.
  • 15. Arashnia, I., Najafi, G., Ghobadian, B., Yusaf, T., Mamat, R., Kettner, M. 2015. “Development of Micro-Scale Biomass-Fuelled CHP System Using Stirling Engine,” Energy Procedia, vol. 75, p. 1108-1113.
  • 16. Renzi, M., Brandoni, C. 2014. “Study and Application of a Regenerative Stirling Cogeneration Device Based on Biomass Combustion,” Applied Thermal Engineering, vol. 67, no. 1-2, p. 341-351.
  • 17. Pilavachi, P. A. 2000. “Power Generation with Gas Turbine Systems and Combined Heat and Power,” Applied Thermal Engineering, vol. 20, no. 15-16, p. 1421–1429.
  • 18. Nikpey, H., Assadi, M., Breuhaus, P. 2013. “Development of an Optimized Artificial Neural Network Model for Combined Heat and Power Micro Gas Turbines,” Applied Energy, vol. 108, p. 137-148.
  • 19. Nikpey, H., Assadi, M., Breuhaus, P., Mørkved, P. T. 2014. “Experimental Evaluation and ANN Modeling of a Recuperative Micro Gas Turbine Burning Mixtures of Natural Gas and Biogas,” Applied Energy, vol. 117, p. 30-41.
  • 20. Pilavachi, P. A. 2002. “Mini- and Micro-Gas Turbines for Combined Heat and Power,” Applied Thermal Engineering, vol. 22, p. 2003-2014.
  • 21. Al-attab, K. A., Zainal, Z. A. 2010. “Turbine Startup Methods for Externally Fired Micro Gas Turbine (EFMGT) System Using Biomass Fuels,” Applied Energy, vol. 87, no. 4, p. 1336-1341.
  • 22. Stathopoulos, P., Paschereit, C. O. 2015. “Retrofitting Micro Gas Turbines for Wet Operation. A Way to Increase Operational Flexibility in Distributed CHP Plants,” Applied Energy, vol. 154, p. 438-446.
  • 23. COGEN Europe. 2001. “An Educational Tool for Cogeneration,” http://www.esco.co.ua, son erişim tarihi: 19.04.2016.
  • 24. Qiu, G., Liu, H., Riffat, S. 2011. “Expanders for Micro-CHP Systems with Organic Rankine Cycle,” Applied Thermal Engineering, vol. 31, no. 6, p. 3301-3307.
  • 25. Schuster, A., Karellas, S., Kakaras, E., Spliethoff, H. 2009. “Energetic and Economic Investigation of Organic Rankine Cycle Applications,” Applied Thermal Engineering, vol. 28, no. 8-9, p. 1809-1817.
  • 26. Liu, H., Qiu, G., Shao, Y., Daminabo, F., Riffat, S. B. 2010. “Preliminary Experimental Investigations of a Biomass-Fired Micro-Scale CHP with Organic Rankine Cycle,” International Journal of Low-Carbon Technologies, vol. 5, p. 81-87.
  • 27. Ebrahimi, M., Keshavarz, A., Jamali, A. 2012. “Energy and Exergy Analyses of a Micro-Steam CCHP Cycle for a Residential Building,” Energy and Buildings, vol. 45, p. 202-210.
  • 28. Mikielewicz, J. 2010. “Micro Heat and Power Plants Working in Organic Rankine Cycle,” Polish Journal of Environmental Studies, vol. 19, p. 499-505.
  • 29. Elmer, T., Worall, M., Wu, S., Riffat, S. B. 2015. “Emission and Economic Performance Assessment of a solid Oxide Fuel Cell Micro-Combined Heat and Power System in a Domestic Building,” Applied Thermal Engineering, vol. 90, p. 1082-1089.
  • 30. Marcoberardino, G. D., Roses, L., Manzolini, G. 2016. “Technical Assessment of a Micro-Cogeneration System Based on Polymer Electrolyte Membrane Fuel Cell and Fluidized Bed Autothermal Reformer,” Applied Energy, vol. 162, p. 231-244.
  • 31. Wongchanapai, S., Iwai, H., Saito, M., Yoshida, H. 2013. “Performance Evaluation of a Direct-Biogas Solid Oxide Fuel Cell-Micro Gas Turbine (SOFC-MGT) Hybrid Combined Heat and Power (CHP) System,” Journal of Power Sources, vol. 223, p. 9-17.
  • 32. Choudhury, A., Chandra, H., Arora, A. 2013. “Application of Solid Oxide Fuel Cell Technology for Power Generation—A Review,” Renewable and Sustainable Energy Reviews, vol. 20, p. 430-442.
  • 33. Khani, L., Mahmoudi, S. M. S., Chitsaz, A., Rosen, M. A. 2016. “Energy and Exergoeconomic Evaluation of a New Power/Cooling Cogeneration System Based on a Solid Oxide Fuel Cell,” Energy, vol. 94, p. 64-77.
  • 34. Najafi, B., Mamaghani, A. H., Rinaldi, F., Casalegno, A. 2015. “Fuel Partialization and Power/Heat Shifting Strategies Applied to a 30 kWel High Temperature PEM Fuel Cell Based Residential Micro Cogeneration Plant,” International Journal of Hydrogen Energy, vol. 40, p. 14224-14234.
  • 35. Maghanki, M. M., Ghobadian, B., Najafi, G., Galogah, R. J. 2013. “Micro Combined Heat and Power (MCHP) Technologies and Applications,” Renewable and Sustainable Energy Reviews, vol. 28, p. 510-524.
  • 36. http://world.honda.com/power/cogenerator/, son erişim tarihi: 19.04.2016.
  • 37. http://www.cogengreen.com/en/ecogen-12ag, son erişim tarihi: 24.04.2016.
  • 38. http://www.bhkw-prinz.de/vaillant-ecopower-3-0-und-ecopower-4-7-mini-bhkw/61, son erişim tarihi: 21.04.2016.
  • 39. http://www.senertec.de/, son erişim tarihi: 21.04.2016.
  • 40. http://www.aisin.com, son erişim tarihi: 21.04.2016.
  • 41. Roselli, C., Sasso, M., Sibilio, S., Tzscheutschler, P. 2011. “Experimental Analysis of Microcogenerators Based on Different Prime Movers,” Energy and Buildings, vol.43, p.796-804.
  • 42. http://www.ecpower.eu/en/technical-data.html, son erişim tarihi: 22.04.2016.
  • 43. Barbieri, E. S., Spina, P. R., Venturini, M. 2012. “Analysis of Innovative Micro-CHP Systems to Meet Household Energy Demands,” Applied Energy, vol. 97, p. 723-733.
  • 44. http://www.disenco.com/, son erişim tarihi: 22.04.2016.
  • 45. http://www.infiniacorp.com, son erişim tarihi: 23.04.2016.
  • 46. Visser, W. P. J., Shakariyants, S. A., Oostveen, M. 2010. “Development of a 3 kW Microturbine for CHP Applications,” Journal of Engineering for Gas Turbines and Power, vol. 133 no. 4, p. 042301.
  • 47. http://www.otag.de, son erişim tarihi: 25.04.2016.
  • 48. http://www.genlec.com, son erişim tarihi: 15.04.2016.
  • 49. http://www.cogenmicro.com, son erişim tarihi: 15.04.2016.
  • 50. http://www.hexis.com/en/system-data, son erişim tarihi: 28.02.2017.
  • 51. Wu, D. W., Wang, R. Z. 2006. “Combined Cooling, Heating and Power: A Review,” Progress in Energy and Combustion Science, vol. 32, no. 5-6, p. 459-495.
  • 52. Brooks, K., Makhmalbaf, A., Anderson, D., Amaya, J., Pilli, S., Srivastava, V., Upton, J. 2013. “Business Case for a Mico-Combined Heat and Power Fuel-Cell System in Commercial Applications,” Pacific Northwest National Laboratory, U.S. Departmant of Energy, Washington, USA.