Alüminyum ve Alaşımlarının Toz Metalurjisi İşlemleri

Toz metalurjisi (TM), üreticilere diğer imal usullerine göre büyük avantajlar sunan bir üretim yöntemidir. Bu yöntemin aşamaları olan toz üretimi, toz işleme, presleme, sinterleme ve sinterleme sonrası işlemlerdeki küçük farklılıklar nihai ürün özelliklerini büyük oranda etkilemektedir. Alüminyum alaşımları günümüzde en çok kullanılan ikinci mühendislik alaşımıdır. Günümüzde otomotiv sektöründe bazı alüminyum parçalar TM uygulamaları ile üretilmektedir. Yüksek dayanımlı alüminyum TM alaşımlarının geliştirilmesi ile ileride daha fazla sayıda parçanın bu yöntemle üretilmesi beklenmektedir. Bu çalışmada, alüminyum alaşımlarından TM ile parça üretimi hakkında bilgi verilmiş, özellikle mühendislik uygulamalarında sıklıkla kullanılan Al-Cu, Al-Si ve Al-Mg alaşımlarıyla ilgili literatürdeki bir takım sonuçlardan örnekler sunulmuştur. Farklı alaşımların sinterlenmesi sonucu elde edilen özellikler hakkında bilgi verilmiştir.  

Powder Metallurgy Processing of Aluminum Alloys

Powder metallurgy (PM) is a production method that offers manufacturers great advantages over other manufacturing processes. Little changes in the production steps of powder metallurgy method such as powder manufacture, powder processing, pressing, sintering affect the properties of the final product significantly. Aluminum alloys are second most used alloy in the engineering applications. Nowadays some parts in the automotive sector are produced with aluminum PM alloys. In the future, it is expected that more Al-PM parts will be produced with the development of new high strength Al based PM alloys. In this study, information about the production of the Al-PM parts is given and some examples about the sintering of Al-Cu, Al-Si and Al-Mg PM alloys from the relevant literature are presented. Properties of the various sintered PM Aluminum alloys are highlighted. 

___

  • 1. Altenpohl, D. G. 1980. Present Structure and Future Trends in Key Materials Industries. Materials in World Perspective: Assessment of Resources, Technologies and Trends for Key Materials Industries, Springer Berlin Heidelberg, Berlin, Heidelberg, Heidelberg p.21–126.
  • 2. Newkirk, J. W. 2003. Handbook of Aluminum: Physical Metallurgy and Processes, vol.1, Marcel Dekker Inc., New York.
  • 3. Scamans, G. 2009. “The Future of Light Metals,” Materials Technology, vol. 24, no. 3, p. 129–30.
  • 4. Capral Aluminium. 2008. “Aluminium and Aluminium Alloys - Characteristic Advantages and Beneficial Properties of Aluminium Extrusions,” p. 1–12.
  • 5. Ghassemieh, E. 2011. “Materials in Automotive Application , State of the Art and Prospects,”New Trends and Developments in Automotive Industry, p. 365–94.
  • 6. Miller, W., Zhuang, L., Bottema, J., Wittebrood, A., De Smet, P., Haszler, a., etal. 2000. “Recent Development in Aluminium Alloys for The Automotive Industry,” Materials Science and Engineering: A, vol. 280, no.1, p. 37–49.
  • 7. Hirsch, J. 2004. “Automotive Trends in Aluminium-The European Perspective,” Materials Forum, vol. 28, no. 3, p. 15–23.
  • 8. Hirsch, J. 2011. “Aluminium in Innovative Light-Weight Car Design,” Materials Transactions, vol. 52, no. 5, p. 815–823.
  • 9. Pinto, A. S. A. F. 2009.” Evolution of Weight , Fuel Consumption and CO2 of Automobiles,” MSc Thesis, Universidade Tecnica de Lisboa, Lisbon.
  • 10. Cheah, L., Evans, C., Bandivadekar, A., Heywood, J. 2009. “Factor of Two: Halving the Fuel Consumption of New u.s. Automobiles by 2035,” no. 9, p. 49–71.
  • 11. Helms, H., Lambrecht, U. 2004. “Energy Savings by lightweighting (Final report),”IFEU-Institute for Energy and Environmental Research, no. 01, p. 103.
  • 12. German, R. M. 2016. Sintering Science : An Historical Perspective Sintering Science: German Materials Technology, California.
  • 13. Ramakrishnan, P. 1983. “History of Powder Metallurgy,” Indian Journal of History of Science, vol.18, no.1, p. 109–14.
  • 14. Pickens, J. R.1981. “Aluminium Powder Metallurgy Technology for High-Strength Applications,” Journal of Materials Science, vol.16, no. 6, p. 1437–57.
  • 15. Dowson, G., Whittaker, D. 2008. Introduction to Powder Metallurgy the Process and its Products, European Powder Metallurgy Association, London.
  • 16. Moon, J. R. 2007. Introduction to PM, A Residential Training Course for Young Materials Engineers, Course Booklet, European Powder Metallurgy Association, London.
  • 17. Tengzelius, J. 2007. “A Pressing Need to Broadcast Virtues of PM Processing,” Metal Powder Report, vol. 62, no. 10, p. 28–32.
  • 18. Upadhyaya, G. S. 1999. Sintered Metallic and Ceramic Materials: Preparation, Properties and Applications, Chichester, New York.
  • 19. Schubert, T., Weißgärber, T., Kieback, B., Balzer, H., Neubing, H. C., Baum, U., etal., 2005. “Aluminium PM is a Challenge that Industry Can Overcome” Metal Powder Report, vol. 60, no. 3, p. 32–7.
  • 20. Fujiki, A. 2001. “Present State and Future Prospects of Powder Metallurgy Parts for Automotive Applications,” Materials Chemistry and Physics, vol. 67, no. 1–3, p. 298–306.
  • 21. Jangg, G., Danninger, H., Schroder, K., Abhari, K., Neubing, H., Seyrkammer, J. 1996. “PM Aluminum Camshaft Belt Pulleys for,” vol. 89, p. 179–89.
  • 22. Davis, J. R. 1993. ASM Specialty Handbook: Aluminum and Aluminum Alloys, 978-0-87170-496-2, 3rd ed., ASM International, Ohio.
  • 23. Gökçe, A. 2013. “Toz Metalurjisi Yöntemiyle Üretilen Al-Cu Alaşımlarının Mekanik Özelliklerinin Geliştirilmesi,” PhD Thesis, Sakarya University, Sakarya.
  • 24. Schaffer, G.B. 2004. “Powder Processed Aluminium Alloys,”Materials Forum, vol. 28, p. 65–74.
  • 25. Bauccio, M.1993. ASM Metals Reference Book, 9780871704788, ASM international, OHIO.
  • 26. Ünal, A., Leon, D., Gurganus, T., Hildeman, G. 1998. “Production of Aluminum and Aluminum-Alloy Powder,”ASM Handbook, Powder Metal Technologies and Applications, vol. 7, p. 148–59.
  • 27. Moreno, M. F., González Oliver, C.J.R. 2011. “Densification of Al Powder and AlCu Matrix Composite (Reinforced with 15% Saffil Short Fibres) During Axial Cold Compaction,”Powder Technology, vol. 206, no. 3, p. 297–305.
  • 28. Schubert, T., Weißgärber, T., Kieback, B., Balzer, H., Neubing, H. C., Baum, U., etal. 2004. P/M Aluminium Structural Parts for Automotive Application. In Euro PM 2004, European Powder Metallurgy Association (Editor: Danninger, H.) Vienna, p. 627–32.
  • 29. Eksi, A. K., Acar, A. N., Ekicibil, A. 2015. “Some Transport Properties of Alumix-431 Materials by Prepared P / M Method,” vol. 3, no. 5, p. 253–8.
  • 30. Bidulský, R., Grande, M. A., Bidulská, J., Kočiško, R., Kvačkaj, T. 2011. “An Evaluation of Severe Plastic Deformation on the Porosity Characteristics of Powder Metallurgy Aluminium Alloys Al-Mg-Si-Cu-Fe and Al-Zn-Mg-Cu,” Aluminium Alloys, Theory and Applications, Prof. Tibor Kvackaj (Ed.), 978-953-307-244-9, InTech Publication, Crotia.
  • 31. Walker, J. C., Rainforth, W. M., Jones, H. 2005. “Lubricated Sliding Wear Behaviour of Aluminium Alloy Composites,” Wear, vol. 259, no.1–6, p. 577–89.
  • 32. Youseffi, M., Showaiter, N. 2006. “PM Processing of Elemental and Prealloyed 6061 Aluminium Alloy With and Without Common Lubricants And Sintering Aids.,”Powder Metallurgy, vol. 49, no. 3, p. 240–52.
  • 33. Gökçe, A., Findik, F., Kurt, A. O. 2013. “Effects of Mg Content on Aging Behavior of Al4CuXMg PM Alloy,” Materials and Design, vol. 46, p. 524–31.
  • 34. Boland, C. D., Hexemer, R. L., Donaldson, I. W., Bishop, D. P. 2013. “Industrial Processing of a Novel Al-Cu-Mg Powder Metallurgy Alloy,” Materials Science and Engineering A, vol. 559, p. 902–8.
  • 35. Gökçe, A., Findik, F., Kurt, A.O. 2016. “Sintering and Aging Behaviours of Al4CuXMg PM Alloy,” Canadian Metallurgical Quarterly, vol. 55, no. 4, p. 391–401.
  • 36. Boland, C. D., Paul Bishop, D., Hexemer, R. L., Donaldson, I. W. 2011. “Development of an Aluminum PM Alloy for “Press-Sinter-Size” Technology,” International Journal of Powder Metallurgy (Princeton, New Jersey), vol. 47, no. 1, p. 39–48.
  • 37. German, R. M. 2005. A - Z of Powder Metallurgy, Elsevier, Michigan.
  • 38. Tang, F., Anderson, I. E., Biner, S. B. 2002. “Solid State Sintering and Consolidation of Al Powders and Al Matrix Composites,” Journal of Light Metals, vol. 2, no. 4, p. 201–14.
  • 39. Tang, F., Anderson, I. E., Gnaupel-Herold, T., Prask, H. 2004. “Pure Al Matrix Composites Produced by Vacuum Hot Pressing: Tensile Properties and Strengthening Mechanisms,”Materials Science and Engineering: A, vol. 383, no. 2, p. 362–73.
  • 40. Price, P. E., Kohler, S. P. Cold Isostatic Pressing of Metal Powders. ASM Handbook Volume 7, Powder Metal Technologies and Applications, ASM international, Ohio.
  • 41. Atkinson, H. V., Davies, S. 2000. “Fundamental Aspects of Hot Isostatic Pressing: An Overview,” Metallurgical and Materials Transactions A, vol.31, no.12, p. 2981–3000.
  • 42. Kim, J. S., Jiang, K., Chang, I. 2006. “A Net Shape Process for Metallic Microcomponent Fabrication Using Al And Cu Micro/Nano Powders,” Journal of Micromechanics and Microengineering, vol. 16, no. 1, p. 48.
  • 43. Choudhury, I. A., Azuddin, M., Yun, C. X. 2013. “Investigation of Powder and Binder Mixing Mechanism in Metal Injection Molding,” International Conference on Mechanical, Industrial and Materials Engineering, vol. 2013. Rajshahi, Bangladesh.
  • 44. Kyocera Global. http://global.kyocera.com/fcworld/first/process03.html, son erişim tarihi: 02.02.2016.
  • 45. Schatt, W., Association, Wieters, K. P. 1997. Powder Metallurgy: Processing and Materials, European Powder Metallurgy Association, Shrewsburry.
  • 46. Nylund, A., Olefjord, I. 1993. “Surface-Analysis of Air Exposed Rapidly Solidified Aluminum Powder,” Powder Metallurgy, vol. 36, no. 3, p. 193–7.
  • 47. Lumley, R. N., Sercombe, T. B., Schaffer, G. M. 1999. “Surface Oxide and The Role of Magnesium During The Sintering of Aluminum,” Metallurgical and Materials Transactions A, vol. 30, no. 2, p. 457–63.
  • 48. Kowalski, L., Korevaar, B. M., Duszczyk, J. 1992. “Some New Aspects Of The Theory of Oxidation and Degassing of Aluminium-Based Alloy Powders,” Journal of Materials Science, vol. 27, no. 10, p. 2770–80.
  • 49. Wysong, W. S. 1947. “Thin Oxide Films on Aluminum,”The Journal of Physical Chemistry, vol. 51, no. 5, p. 1087–103.
  • 50. Kim, Y. W., Griffith, W., Froes, F. 1985. “Surface Oxides,”Journal of Metals, vol. 8, p. 27–33.
  • 51. Smart, R., Ellwood, E. 1958. “Sintering of Tin Powder,” Nature, vol.182, p. 1638–40.
  • 52. Schaffer, G. B., Sercombe, T. B., Lumley, R. N. 2001. “Liquid Phase Sintering of Aluminium Alloys,” Materials Chemistry and Physics, vol. 67, no. 1–3, p. 85–91.
  • 53. MacAskill, I. A., Hexemer, R. L., Donaldson, I. W., Bishop, D. P. 2010. “Effects Of Magnesium, Tin and Nitrogen on The Sintering Response of Aluminum Powder,” Journal of Materials Processing Technology, vol. 210, no. 15, p. 2252–60.
  • 54. Sercombe, T. B. 1998. “Non-Conventional Sintered Aluminium Powder Alloys,” PhD Thesis, The University of Queensland, Brisbane.
  • 55. German, R. M. 1996. Sintering Theory and Practice, 047105786X, John Wiley & Sons Inc, Chicago.
  • 56. Liu, Z. Y., Sercombe, T. B., Schaffer, G. B. 2007. “The Effect of Particle Shape on The Sintering of Aluminum,”Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, vol. 38, no. 6, p. 1351–7.
  • 57. Miyake, S. 2005. Novel Materials Processing by Advanced Electromagnetic Energy Sources: Proceedings of the International Symposium on Novel Materials Processing by Advanced Electromagnetic Energy Sources (MAPEES’04), Elsevier Science, Osaka, Japan.
  • 58. Kondoh, K., Kimura, A., Watanabe, R. 2001. “Effect of Mg on Sintering Phenomenon of Aluminium Alloy Powder Particle,” Powder Metallurgy, vol. 44, no. 2, p. 161–4.
  • 59. Gökçe, A., Findik, F., Kurt, A. O. 2011. “Microstructural Examination and Properties of Premixed Al-Cu-Mg Powder Metallurgy Alloy,” Materials Characterization, vol. 62, no. 7, p. 730–5.
  • 60. Pieczonka, T., Kazior, J., Szexczyk-Nykiel, A., Hebda, M., Nykiel, M. 2012. “Effect of Atmosphere on Sintering of Alumix 431D Powder,” Powder Metallurgy, vol. 55, no.5, p. 354–60.
  • 61. Pieczonka, T., Schubert, T., Baunack, S., Kieback, B. 2005. “Sintering Behaviour of Aluminium in Different Atmospheres,” no. August 2016, p. 5–8.
  • 62. Schaffer, G. B., Hall, B. J. 2002. “The Influence of The Atmosphere on The Sintering of Aluminum,” Metallurgical and Materials Transactions A, vol. 33, no. 10, p. 3279–84.
  • 63. Yan, M., Yu, P., Schaffer, G. B., Qian, M. 2010. “Secondary Phases And Interfaces in a Nitrogen-Atmosphere Sintered Al Alloy: Transmission Electron Microscopy Evidence for the Formation of Aln During Liquid Phase Sintering,” Acta Materialia, vol.58, no. 17, p. 5667–74.
  • 64. Pieczonka, T., Schubert, T., Baunack, S., Kieback, B. 2008. “Dimensional Behaviour of Aluminium Sintered in Different Atmospheres,” Materials Science and Engineering A, vol. 478, no. 1–2, p. 251–6.
  • 65. Schaffer, G. B., Hall, B. J., Bonner, S. J., Huo, S. H., Sercombe, T. B. 2006. “The Effect of the Atmosphere and the Role of Pore Filling on the Sintering of Aluminium,” Acta Materialia, vol. 54, no. 1, p. 131–8.
  • 66. Gökçe, A., Fındık, F., Kurt, A. O. 2014. Effects of Sintering Temperature and Time on the Properties of Al-Cu PM Alloy. In 7th International Powder Metallurgy Conference and Exhibition (Editors: Rahmi, Ü., Yusuf, U., Mehmet, T.), Turkish Powder Metallurgy Association, Ankara.
  • 67. Fuentes, J. J., Rodriguez, J. A., Herrera, E. J. 2010. “Processing of Mechanically Alloyed Aluminum Powder: A Metallographic Study,” Materials Characterization, vol. 61, no. 4, p. 386–95.
  • 68. Amazonaws.com http://s3.amazonaws.com/chegg.media.images/board/ec1/ec1b410b4f86-4fdb-9722-8a8a7996e18a-original.png, son erişim tarihi: 02.02.2017.
  • 69. Fischmeister, H. F., Kehl, W. 1980. “Liquid Phase Sintering of Al-Cu Compacts,” Powder Metallurgy, vol. 23, no. 3, p. 113–9.
  • 70. Padmavathi, C., Agarwal, D., Upadhyaya, A. 2015, “Microwave Sintering of Aluminum Alloys,” https://www.mri.psu.edu/sites/default/files/file_attach/162.pdf, son erişim tarihi: 02.02.2017, p. 153–157.
  • 71. Min, K. H., Kang, S. P., Lee, B. H., Lee, J. K., Kim, Y. Do. 2006. “Liquid Phase Sintering of the Commercial 2xxx Series Al Blended Powder,”Journal of Alloys and Compounds, vol. 419, no. 1–2, p. 290–293.
  • 72. Cook, R., Chang, I.T.H., Falticeanu, C.L. 2007. “Aluminium and Aluminium Alloy Powders for P/M Applications,”Materials Science Forum, vol. 534–536, p. 773–776.
  • 73. Kim, J., Chang, I. T., Falticeanu, C. L., Davies, G. J., Jiang, K. C. 2007. “A Study of Debinding Behavior and Microstructural Development of Sintered Al-Cu-Sn Alloy,” vol. 536, p. 769–772.
  • 74. Padmavathi, C., Upadhyaya, A. 2011. “Sintering Behaviour and Mechanical Properties Of Al-Cu-Mg-Si-Sn Aluminum Alloy,” Transactions of the Indian Institute of Metals, vol. 64, no. 4–5, p. 345–57.
  • 75. Durmuş, H. K., Meriç, C. 2007. “Age-hardening Behavior of Powder Metallurgy AA2014 Alloy,” Materials and Design, vol. 28, no. 3, p. 982–6.
  • 76. Ruiz-Navas, E. M., Fogagnolo, J. B., Velasco, F., Ruiz-Prieto, J. M., Froyen, L. 2006. “One Step Production of Aluminium Matrix Composite Powders by Mechanical Alloying,” Composites Part A: Applied Science and Manufacturing, vol. 37, no. 11, p. 2114–20.
  • 77. Delgado, M. L., Ruiz-Navas, E. M., Gordo, E., Torralba, J. M. 2005. “Enhancement of Liquid Phase Sintering Through Al-Si Additions to Al-Cu Systems,” Journal of Materials Processing Technology, vol. 162–163, no. SPEC. ISS., p. 280–5.
  • 78. Carvalho, M. H., Marcelo, T., Carvalhinhos, H., Sellars, C. M. 1992. “Extrusion and Mechanical Properties of Mixed Powder and Spray Co-Deposited Al 2014/Sic Metal Matrix Composites,”Journal of Materials Science, vol. 27, no. 8, p. 2101–9.
  • 79. Bardi, F., Cabibbo, M., Evangelista, E., Spigarelli, S., Vukcevic, M. 2003. “An Analysis of Hot Deformation of an Al-Cu-Mg Alloy Produced by Powder Metallurgy,” Mater. Sci. Engng A, vol. 339, p. 43–52.
  • 80. Spigarellp, S., Langdon, T. G., Angeles, L. 1997. “Creep Behavior of an Aluminum 2024 Alloy Produced By Powder Metallurgy,” vol. 45, no. 2, p. 529–40.
  • 81. Chou, S. 1988. “Mechanical Behavior of Silicon Carbide / 2014 Aluminum Composite,”In Testing Technology of Metal Matrix Composites, ASTM STP 964, (Editors: P. R. Di Giovanni and N. R. Adsit), American Society for Testing and Materials, Philadelphia.
  • 82. Xiang, S., Matsuki, K., Takatsuji, N., Yokote, T., Kusui, J., Yokoe, K. 1999. “Investigation of the Age Hardening Behavior of PM 2024Al-Fe-Ni Alloys and the Effect of Consolidation Conditions,” Journal of Materials Science, vol. 34, no. 8, p. 1953–8.
  • 83. Miller, M. K. 2001. “Determining the Role of Surfaces and Interfaces in the Powder Metallurgy Processing of Aluminum Alloy Powders,” Surface and Interface Analysis, vol. 31, no. 7, p. 599–608.
  • 84. Ridder, S. D., Shechtman, D. 1986. “Microstructure of Supercooled Submicrometre Aluminum-Copper Alloy Powder,” In Rapidly Solidifled Powder Aluminum Alloys (Editors: H. P. Mahy, J. R. Schroeder, K. A. Greene, W. T. Benzing), ASTM, Baltimore, p. 252–9.
  • 85. Kaftelen, H., Henein, H., Ovecoglu, M. L. 2013. “Fabrication of TiC and ZrC Reinforced Al-4 wt% Cu Composite Droplets Using Impulse Atomization,” Journal of Composite Materials, vol.47, no.5, p. 587–601.
  • 86. Ray, A. K., Venkateswarlu, K., Chaudhury, S. K., Das, S. K., Ravi Kumar, B., Pathak, L. C. 2002. “Fabrication of TiN Reinforced Aluminium Metal Matrix Composites Through a Powder Metallurgical Route,” Materials Science and Engineering A, vol. 338, no.1–2, p. 160–5.
  • 87. Ghazali, M. J., Rainforth, W. M., Jones, H. 2005. “Dry Sliding Wear Behaviour of Some Wrought, Rapidly Solidified Powder Metallurgy Aluminium Alloys,” Wear, vol.259, no.1–6, p. 490–500.
  • 88. Bishop, D. P., Li, X. Y., Tandon, K. N., Caley, W. F. 1998. “Dry sliding Wear Behaviour of Aluminum Alloy 2014 Microalloyed with Sn and Ag,” Wear, vol. 222, no. 2, p. 84–92.
  • 89. Savitskii, A. P., Afanas’ev, O. B., Gopienko, V. G., Martsunova, L. S., Romanov, G. N., Zayats, T. L. 1986. “Effect of Aluminum Particle Size on the Volume Changes Experienced by Compacts From a Mixture of Aluminum and Copper Powders During Liquid-Phase Sintering,” Soviet Powder Metallurgy and Metal Ceramics, vol. 25, no. 9, p. 721–5.
  • 90. Lianxi, H., Zuyan, L., Erde, W. 2002. “Microstructure and Mechanical Properties of 2024 Aluminum Alloy Consolidated From Rapidly Solidified Alloy Powders,” Materials Science and Engineering A, vol. 323, no. 1–2, p. 213–7.
  • 91. Badini, G., Marino, F., Verne, E., Guo, X. B. 1995. “Aging lnvestigafion on 2O24/SiC Composite and 2024 Alloy,”Metallurgical Science and Technology, vol. 13, no. 1, p. 29–38.
  • 92. Momeni, H., Razavi, H., Shabestari, S.G. 2011. “Effect of Supersolıdus Liquıd Phase Sinterıng on the Microstructure and Densification of the Al-Cu-Mg Pre- Alloyed Powder,” vol. 8, no. 2, p. 10–7.
  • 93. Zhang, Q., Xiao, B. L., Liu, Z. Y., Ma, Z. Y. 2011. “Microstructure Evolution and Elemental Diffusion of Sicp/Al-Cu-Mg Composites Prepared From Elemental Powder During Hot Pressing,” Journal of Materials Science, vol. 46, no. 21, p. 6783–93.
  • 94. Dhokey, N. B., Athavale, V. A., Narkhede, N., Kamble, M. 2013. “Effect of Processing Conditions on Transient Liquid Phase Sintering of Premixed Aluminium Alloy Powders,” Advanced Materials Letters, vol. 4, no. 3, p. 235–40.
  • 95. Laska, M., Kazior, J. 2012. “Influence of Various Process Parameters On The Density Of Sintered Aluminium Alloys,”Acta Polytechnica, vol. 52, no. 4, p. 93–5.
  • 96. Simchi, A., Veltl, G. 2003. “Investigation of Warm Compaction And Sintering Behaviour Of Aluminium Alloys,” Powder Metallurgy, vol. 46, no. 2, p. 159–64.
  • 97. Meluch, L., Chang, I. T. H. 2009. “Study of Warm Compaction of Alumix 123 L,”Powder Metallurgy, vol. 53, no. 4, p. 323–8.
  • 98. Toyran, O., Gökçe, A., Kurt, A. O. 2011. “Effects of Micro Level Si Addition on The Properties of Aluminium PM Alloy,” In Proceedings of The 6th International Powder Metallurgy Conference and Exhibition (Editors: Türker, M., Kalkanlı, A., Uslan, İ., Demir, T., Usta, Y., Dericioğlu, A.), Turkish Powder Metallurgy Association, Ankara.
  • 99. Martín, J. M., Castro, F. 2003. “Liquid Phase Sintering of P/M Aluminium Alloys: Effect of Processing Conditions,” Journal of Materials Processing Technology, vol. 143– 144, no. 1, p. 814–21.
  • 100. Jose M, M., Francisco, C. 2007. “Sintering Response and MicrostructuralEevolution of an Al-Cu-Mg-Si Premix,” International Journal of Powder Metallurgy, vol. 43, no. 6, p. 59–69.
  • 101. Kim, T. S., Kim, T. H., Oh, K. H., Lee, H. I. 1992. “Suppression of Theta Formation in the SiC Whisker-reinforced Al-4 wt % Cu Composites,” Journal of Materials Science, vol.27, p. 2599–605.
  • 102. Sarkar, B., W, B. L. 1986. “Thermomechanlcal Treatment of 2124 PM Aluminum Alloys with Low and High Dlspersoid Levels,” In Rapidly Solidified Powder Aluminum Alloys. ASTM STP 890 (Editors: M. E. Fine and E. A. Starke, Jr.), American Society for Testing and Materials, Pliiladelphia.
  • 103. Heard, D. W., Donaldson, I. W., Bishop, D. P. 2009. “Metallurgical Assessment of a Hypereutectic Aluminum-Silicon P/M Alloy,” Journal of Materials Processing Technology, vol. 209, no. 18–19, p. 5902–11.
  • 104. Dixon, C. F., Skelly, H. M. 1965. “Hypereutectic Aluminum–Silicon Alloys Produced by Powder Metallurgy Techniques,” International Journal of Powder Metallurgy (Princeton, New Jersey), vol. 1, no. 4, p. 28–36.
  • 105. Akechi, K., Odani, Y., Kuroishi, N. 1985. “High Strength Aluminum Alloys From Powder Metallurgy,” Sumitomo Electric Technical Review, no. 24.
  • 106. Shen, J., Xie, Z., Gao, Y., Zhou, B., Li, Q., Su, Z., et al. 2001. “Microstructure Characteristics of a Hypereutectic Al-Si Alloy Manufactured by Rapid Solidification/Powder Metallurgy Process,” Journal of Materials Science Letters, vol. 20, no. 16, p. 1513–5.
  • 107. Casellas, D., Beltran, A., Prado, J. M. M., Larson, A., Romero, A. 2004. “Microstructural Effects on the Dry Wear Resistance of Powder Metallurgy Al-Si Alloys,” Wear, vol. 257, no. 7–8, p. 730–9.
  • 108. Kennedy, A. R. 2002. “The Microstructure and Mechanical Properties of Al-Si-B4C Metal Matrix Composites,” Journal of Materials Science, vol. 37, no. 2, p. 317–23.
  • 109. Gupta, M., Ling, S. 1999. “Microstructure and Mechanical Properties of Hypo/HyperEutectic Al–Si Alloys Synthesized Using a Near-Net Shape Forming Technique,” Journal of Alloys and Compounds, vol. 287, no. 1, p. 284–94.
  • 110. Lee, T. H., Hong, S. J. 2009. “Microstructure and Mechanical Properties of Al–Si–X Alloys Fabricated by Gas Atomization and Extrusion Process,” Journal of Alloys and Compounds, vol. 487, no. 1, p. 218–24.
  • 111. Choi, H. J., Shin, J. H., Min, B. H., Bae, D. H. 2010. “Deformation Behavior of Al–Si Alloy Based Nanocomposites Reinforced With Carbon Nanotubes,” Composites Part A: Applied Science and Manufacturing, vol. 41, no. 2, 327–329.
  • 112. Arockiasamy, A., German, R. M., Wang, P. T., Horstemeyer, M. F., Morgan, W., Park, S. J., et al. 2011. “Sintering Behaviour of Al-6061 Powder Produced by Rapid Solidification Process,” Powder Metallurgy, vol. 54, no. 3, p. 354–9.
  • 113. Showaiter, N., Youseffi, M. 2008. “Compaction, Sintering and Mechanical Properties of Elemental 6061 Al Powder with and without Sintering Aids,” Materials and Design, vol. 29, no. 4, p. 752–62.
  • 114. Sercombe, T. B. 2003. “On the Sintering of Uncompacted, Pre-Alloyed Al Powder Alloys,” Materials Science and Engineering A, vol. 341, no. 1–2, p. 163–8.
  • 115. Ibrahim, A., Bishop, D. P., Kipouros, G. J. 2015. “Sinterability and Characterization of Commercial Aluminum Powder Metallurgy Alloy Alumix 321,” Powder Technology, vol. 279, p. 106–12.