GÜNEŞ KOLLEKTÖRLERİNİN ENERJİ, EKSERJİ, TERMOEKOLOJİK, SÜRDÜRÜLEBİLİRLİK, TERMOEKONOMİK VE EKSERGOEKONOMİK ANALİZLERİ

Bu çalışmada, güneş kollektörlerinin enerji, ekserji, termoekolojik, sürdürülebilirlik, termoekonomik ve eksergoekonomik analizleri açıklanmış ve örnek bir uygulama üzerine bu analizler uygulanmıştır. Örnek uygulama olarak 8 m2 alanında düzlemsel güneş kollektörü esas alınmıştır. Sistemin enerji verimi %52,46 olarak bulunurken, ekserji verimi %1,99 olarak hesaplanmıştır. Sistemin sürdürülebilirlik indeksi, termoekolojik performans katsayısı, termoekonomik parametre değeri ve toplam eksergoekonomik parametre değeri sırasıyla 1,02, 0,0206, 1,4 W/TL ve 2,683 W/TL olarak bulunmuştur. Sistemin en yüksek enerji girişi ve ekserji girişi, gelen güneş ışınımından kaynaklanmaktadır. Bu enerjinin/ekserjinin büyük bir kısmının kayba ve tersinmezliklerden dolayı yıkıma uğradığı görülmektedir. Bu durum, düzlemsel güneş kollektörlerinin en büyük dezavantajdır.

ENERGY, EXERGY, THERMOECOLOGIC, SUSTAINABILITY, THERMOECONOMIC AND EXERGOECONOMIC ANALYSES OF SOLAR COLLECTORS

In this study, energy, exergy, thermoecologic, sustainability, thermoeconomic and exergoeconomic analyses of solar collectors are explained and these analyses are applied to a case study. As a case study, flat plate solar collector with 8m2 area is considered. The exergy efficiency of the system is calculated as 1,99%, while energy efficiency is 52,46%. The sustainability index, thermoecologic performance coefficient, thermoeconomic parameter rate and total exergoeconomic parameter rate of the system are found as 1,02, 0,0206, 1,4 W/TL and 2,683 W/TL, respectively. The maximum energy input and exergy input are caused by the incoming solar radiation. It is seen that most of this energy/exergy is lost, and destructed due to irreversibilities. This situation is the biggest disadvantage of the flat plate solar collectors.

___

  • 1. Caliskan, H., Hepbasli, A. 2009. “Comparing the energetic and exergetic prices of various energy sources for the Turkish residential and industrial applications”. Proceedings of the 1st International Exergy, Life Cycle Assessment and Sustainability Workshop & Symposium (ELCAS-2009), Nisyros, Greece, 4-6 June, 2009, pp. Exergy and Buildings I.8.
  • 2. Caliskan, H., Hepbasli, A. 2010. “Energy and exergy prices of various energy sources along with their CO2 equivalents”. Energy Policy 38:3468-3481.
  • 3. Caliskan, H., Dincer, I., Hepbasli, A. 2013. “Energy, exergy and sustainability analyses of hybrid renewable energy based hydrogen and electricity production and storage systems: Modeling and case study”. Applied Thermal Engineering 61:784-798.
  • 4. Caliskan, H., Dincer, I., Hepbasli, A. 2013. “Exergoeconomic and environmental impact analyses of a renewable energy based hydrogen production system”. International Journal of Hydrogen Energy 38:6104-6111.
  • 5. Caliskan, H. 2016. “Exergy and sustainability assessments of flat plate solar thermal collectors”. International Journal of Engineering Technology, Management and Applied Sciences (IJETMAS) 4(10):8-12.
  • 6. Akella, AK., Saini RP, Sharma MP. 2009. “Social, economical and environmental impacts of renewable energy systems”. Renewable Energy 34:390-396.
  • 7. Caliskan, H. 2015. “Thermodynamic and environmental analyses of biomass, solar and electrical energy options based building heating applications”. Renewable & Sustainable Energy Reviews 43:1016-1034.
  • 8. EIA (International Energy Agency). 2013. “U.S. Energy Information Administration”, http://www.eia.gov/tools/faqs/faq.cfm?id=527&t=1. İnternet Erişim, 2020.
  • 9. Chamoli, S. 2013. “Exergy analysis of a flat plate solar collector”. Journal of Energy in Southern Africa 24:8-13.
  • 10. Faizal, M., Saidur, R., Mekhilef, S., Hepbasli, A., Mahbubul, IM. 2014. “Energy, economic, and environmental analysis of a flat-plate solar collector operated with SiO2 nanofluid”. Clean Technologies and Environmental Policy 17:1457–1473.
  • 11. Caliskan, H. 2016. “Environmental assessment of solar collectors”. International Journal of Engineering Technology Science and Research (IJETSR) 3(9):42-45.
  • 12. IEA (International Energy Agency). 2011. “Solar Energy Perspectives: Executive Summary". International Energy Agency. http://www.eng.uc.edu/~beaucag/Classes/SolarPowerForAfrica/SolarEnergyPerspectives6111251e.pdf. İnternet Erişim, 2020.
  • 13. Shojaeizadeh, E., Veysi, F. 2016. “Development of a correlation for parameter controlling using exergy efficiency optimization of an Al2O3/water nanofluid based flat-plate solar collector”. Applied Thermal Engineering 98:1116–1129.
  • 14. Sun, C., Liu, Y., Duan, C., Zheng, Y., Chang, H., Shu, S. A mathematical model to investigate on the thermal performance of a flat plate solar air collector and its experimental verification. Energy Conversion and Management 115:43–51.
  • 15. Kainth, M., Sharma, VK. 2014. “Latest evolutions in flat plate solar collectors technology”, International Journal of Mechanical Engineering (IJME) 1(1):7-11.
  • 16. Jeon, J., Park, S., Lee, BJ. 2016. “Analysis on the performance of a flat-plate volumetric solar collector using blended plasmonicnanofluid”. Solar Energy 132:247–256.
  • 17. Dincer, I., Rosen, MA. 2007. “Exergy: Energy Environment and Sustainable Development”, Oxford, UK, ISBN: 10:0080445292, Elsevier.
  • 18. Ust, Y., Sahin, B., Kodal, A., Akcat, IH. 2006. “Ecological coefficient of performance analysis and optimization of an irreversible regenerative-brayton heat”. Applied Energy 83:558–572.
  • 19. Çalışkan, H. 2012. “Özgün Isıl Enerji Depolama Sistemlerinin Analizi ve Performans Değerlendirmesi”. Doktora Tezi. Ege Üniversitesi.
  • 20. Rosen, MA., Dincer, I. 2003. “Exergy–cost–energy–mass analysis of thermal systems and processes”. Energy Conversion and Management 44:1633–1651.
  • 21. Rosen, MA., Dincer, I. 2003. “Thermoeconomic analysis of power plants: an application to a coal fired electrical generating station” Energy Conversion and Management 44:2743–2761.
  • 22. Rosen, MA., Dincer, I. 2003. “Exergoeconomic analysis of power plants operating on various fuels”, Applied Thermal Engineering 23:643–658.
  • 23. Darling, D. 2016. “Flat Plate Solar Thermal Collector”. http://www.daviddarling.info/encyclopedia/F/AE_flat_plate_solar_thermal_collector.htm. İnternet Erişim, 2016.
  • 24. Solarserver. 2016. “Solar Collectors”. http://www.solarserver.com/knowledge/basic-knowledge/solar-collectors.html. İnternet Erişim, 2016.
  • 25. Enerji Portalı. 2020. “Güneş Kollektörü Nedir”. https://www.enerjiportali.com/gunes-kollektoru-nedir/. İnternet Erişim, 2020.
  • 26. Solaranka. 2020. “Ankara Solar Güneş Enerjisi”. https://www.solaranka.com/, İnternet Erişim, 2020.