Gaz Altı Ark Kaynağı Prosesinde Kaynak Sırası ve Kaynak Penetrasyon Seviyesinin Ürün Ömrüne Etkileri

Gaz metal ark kaynağı, gaz altı kaynağının alt türleri olan "metal inert gaz kaynağı" veya "metal aktif gaz kaynağı" olarak da adlandırılan yüksek hızlı, ekonomik bir işlemdir. Bu yöntem birçok endüstride farklı parça üretimleri için kullanılmaktadır. Bu bildiride, ilgili sürecin otomotiv uygulamalarına ve bu üretim yönteminin parametrelerinin bir aracın aks bileşeninin dayanıklılık performansı üzerindeki etkisine odaklanıldı. Dayanım performans seviyesi değişiklikleri; seri hayat imalat koşullarında üretilen ve gerçek hayat yol yükü şartlarında test edilen akslar üzerinde tespit edildi.Teorik hesaplamalar ve fiziksel testlerden sonra, kaynak işleminin her parametresi için ölçülen her iyileştirme belgelendi. Tüm bu veriler detaylı bir şekilde analiz edildi ve bu parametrelerin aks ömrü üzerinde öngörülen etkileri, seri ömür kullanım koşulu beklentilerine göre değerlendirildi.

Welding Order and Welding Penetration Levels’ Impact on Product Life Cycle For GMAW

Gas metal arc welding is a high-speed, economical process that is also called as "metal inert gas welding" or "metal active gas welding" which are sub-types of gas metal arc welding. This method is used for production of different parts in many industries. In this paper, the focus will be on automotive applications of this process and the impact of the parameters of this production method on the durability performance of the axle component of a vehicle. Experiments have been conducted on the axles that have been produced in serial life production conditions and have been investigated under real life road load conditions to determine their performance levels. After theoretical calculations and physical tests, each measured improvement had been documented for every parameter of the welding process. All this data had been analyzed in detail and these parameters’ projected impacts on the axle life cycle had been evaluated with respect to the serial life usage condition expectations.

___

  • Sproesser, G., Pittner, A., Chang, Y., Finkbeiner, M. (2015). Life Cycle Assessment of welding technologies for thick metal plate welds, Journal of Cleaner Production 108(5), DOI:10.1016/j.jclepro.2015.06.121
  • Casarini, A., Coelho, J., Olivio, E., Braz-César, M., Ribeiro, J. (2020). Optimization and Influence of GMAW Parameters for Weld Geometrical and Mechanical Properties Using the Taguchi Method and Variance Analysis, DOI: 10.18502/keg.v5i6.7097
  • Kah, P, Suoranta, R., Martikainen, J. (2012). Advanced gas metal arc welding processes, Int J Adv Manuf Technol, DOI 10.1007/s00170-012-4513-5
  • Costa, E., Assunção, P., Dos Santos, E., Feio L., Bit-tencourte, M., Braga E. (2017). Residual stresses in cold-wire gas metal arc welding, Science and Technology of Welding and Joining.
  • Fei, Z., Pan, Z., Cuiuri, D., Li, H., Wu, B., Ding, D., Su, L. (2019). Effect of Heat Input on Weld Formation and Tensile Properties in Keyhole Mode TIG Welding Process, Metals 2019.
  • Costa, G., Resende, A. (2020). Evaluation of the TIG–MIG/MAG welding process in direct polarity, SN Applied Sciences (2020) 2:164
  • Aalaea, B., Abderrahmaneb, H., Gael, M. (2016). Computational design of an automotive twist beam, Journal of Computational Design and Engineering, Volume 3, Issue 3, July 2016, Pages 215–225.