Elektrikli Araçların Tasarımında Malzeme Seçiminin Önemi

Elektrikli araçlar artan nüfusla birlikte ihtiyacı karşılamakta yetersiz kalan fosil yakıtların kullanıldığı motorlu araçlara alternatif olarak geliştirilmiştir. Elektrikli araçların yaygınlaşması ile fosil yakıtların kullanımı neticesinde oluşan emisyonların çevresel etkilerinin azaltılması amaçlanmaktadır. Menzilinin kısa olması, batarya dolum süresinin uzunluğu ve satış fiyatının yüksek olması elektrikli araçların yaygınlaşmasının önündeki engellerdir. Maliyeti büyük ölçüde bataryalardan kaynaklanan bu araçların menzili artırmak için daha fazla kapasiteye sahip batarya kullanmak gerekmektedir. Ancak ağır bir araç menzil sorunu oluşturmaktadır. Menzili artırmak için daha düşük yoğunluğa sahip alternatif malzemeler kullanarak araç hafifletilebilir. Böylece aynı batarya kapasitesi ile daha uzun yol kat edilebilmektedir. Araçların imalatında kullanılan bu malzemelerin seçiminde bulunabilirlik, çevresel etki, dayanım ve maliyet gibi unsurlar dikkate alınmalıdır. Bu çalışma kapsamında, elektrikli araçların hafifletilmesi amacı ile kullanılan malzemeler ve bu malzemelerin seçiminde dikkat edilmesi gereken hususlar irdelenmiştir.

Importance of Material Selection in Design of Electric Vehicles

Electric vehicles (EVs) have been developed as an alternative to cars with fossil-fuel engine in consequence of that fossil fuels are incompetence due to increase in population. It is aimed that Green House Gases after fossil-fuel consumption will be reduced by prevalence of electric vehicles. Short ranges, long charging times and high cost are challenges that prevent wide spreading of EVs. Considerable part of costs result from battery expenditure, however, EVs need more batteries for more range. But more battery means shortening the range due to its weight. Lightweight materials are utilized to expand range of vehicle with less battery. Availability, environmental impact, strength and costs must be considered on design stage. In this study, lightweight materials and material selection process are investigated in order to lighten of EVs.

___

  • 1. Larminie, J., Lowry, J. 2003. Electric Vehicle Technology Explained, John Willey & Sons LTD, Oxford.
  • 2. Chan, C. C. 2001. Modern Electric Vehicle Technology. Oxford University Press, New York.
  • 3. Rouilloux, G., Znojek, B. 2012. “Plastics. The Future for Automakers and Chemical Companies,” https://www.atkearney.com/documents/10192/244963/Plastics The_Future_for_Automakers_and_Chemical_Companies.pdf, son erişim tarihi: 20.04.2016.
  • 4. Watarai, H. 2006. “Trend of Research and Development for Magnesium Alloys-Reducing the Weight of Structural Materials in Motor Vehicles,” Science and Technology Trends, vol. 2.
  • 5. Ashley, S. 2012. “Lightweight Sandwich Structures for EV Chassis,” http://articles.sae. org/11744/, son erişim tarihi: 20.04.2016.
  • 6. Center for Automotive Research. 2011. Automotive Technology: Greener Products, Changing Skills-Lightweight Materials & Forming Report, U.S. Employment and Training Administration, http://www.drivingworkforcechange.org/reports/lightweightMaterials.pdf, son erişim tarihi: 21.04.2016.
  • 7. Habertürk. 2015. “Elektrikli Otomobil Sayısı Artıyor,” http://www.haberturk.com/ekonomi/otomobil/haber/1150121-elektrikli-otomobil-sayisi-artiyor, son erişim tarihi: 26.03.2016.
  • 8. Cobb, J. 2015. “One Million Global Plug-in Sales Milestone Reached,” http://www.hybridcars.com/one-million-global-plug-in-sales-milestone-reached/, son erişim tarihi: 23.03.2016.
  • 9. Pasaoglu, G., Fiorello, D., Martino, A., Scarcella, G., Alemanno, A., Zubaryeva, A., Thiel, C. 2012. Report EUR 25627 EN: Driving and Parking Patterns of European Car Drivers - A Mobility Survey, Joint Research Centre of the European Commission, Netherlands, https://setis.ec.europa.eu/sites/default/files/reports/Driving_and_parking_patterns_of_European_car_drivers-a_mobility_survey.pdf, son erişim tarihi: 16.03.2016.
  • 10. U.S. Department of Energy. Fuel Economy Guide, DOE/EE-1249, https://www.fueleconomy.gov/feg/pdfs/guides/FEG2016.pdf, son erişim tarihi: 30.04.2016.
  • 11. Pagerit, S., Sharer, P., Rousseau, A. 2006. “Fuel Economy Sensitivity to Vehicle Mass for Advanced Vehicle Powertrains,” SAE Technical Paper 2006-01-0665, 2006, https://doi.org/10.4271/2006-01-0665.
  • 12. Ashley, S. 2010. “Shedding Pounds on a Magnesium Diet,” Automotive Engineering International, p. 34–36.
  • 13. Wilhelm, M. 1993. “Materials used in Automobile Manufacture - Current State and Perspectives,” Journal de Physique IV Colloque, vol. 3, p. 31–40.
  • 14. Ashley, S. 2013. “Lightweight Materials Compete for Automakers’ Attention,” http://articles.sae.org/12090/, son erişim tarihi: 21.04.2016.
  • 15. Kollamthodi, S., Duncan, K., Ian, S., Craig, D., Hausberger, S. 2015. The Potential for Mass Reduction of Passenger Cars and Light Commercial Vehicles in Relation to Future CO2 Regulatory Requirements, Report for the European Commission – DG Climate Action, Ricardo-AEA, https://ec.europa.eu/clima/sites/clima/files/transport/vehicles/docs/ldv_downweighting_co2_report_en.pdf, son erişim tarihi: 21.04.2016.
  • 16. Marsh, M. 2000. “Development of Auto Body Sheet Materials for Crash Performance, ”Conference of Materials and Structures for Energy Absorption, 9 May 2000, London.
  • 17. Magnusson, C., Andersson, R. 2001. “Stainless Steel as a Lightweight Automotive Material,” http://www.bssa.org.uk/cms/File/Conf%2003%20SS%20as%20a%20Lightweight%20Automotive%20Material.pdf, son erişim tarihi: 18.03.2016.
  • 18. Kuziak, R., Kawalla, R., Waengler, S. 2008. “Advanced High Strength Steels for Automotive Industry,” Archives of Civil and Mechanical Engineering, vol. 8 (2), p. 103–117.
  • 19. Ghassemieh, E. 2011. “Materials in Automotive Application, State of the Art and Prospects,” in New Trends and Developments in Automotive Industry, Marcello Chiaberge (editor), DOI: 10.5772/1821.
  • 20. Cole, G. S., Sherman, A. M. 1995. “Lightweight Materials for Automotive Applications,” Materials Characterization, vol. 35 (1), p. 3–9.
  • 21. Cunat, P. J. 2000. “Stainless Steel Properties for Structural Automotive Applications,” Metal Bulletin International Automotive Materials Conference, 21-23 June 2000, Cologne.
  • 22. Easton, M., Beer, A., Barnett, M., Davies, C., Dunlop, G., Durandet, Y., Blacket, H. T., Beggs, P. 2008. “Magnesium Alloy Applications in Automotive Structures,” Journal of Minerals, Metals, and Materials, vol. 60 (11), p. 57–62.
  • 23. Easton, M., Gibson, M., Beer, A., Barnett, M., Davies, C., Durandet, Y., Blacket, S., Chen, X., Birbilis, N., Abbott, T. 2012. “The Application of Magnesium Alloys to the Lightweighting of Automotive Structures,” 4th International Conference on Sustainable Automotive Technologies, Springer, p. 17–23.
  • 24. Thilagavathi, G., Pradeep, E., Kannaian, T., Sasikala, L. 2010. “Development of Natural Fiber Nonwovens for Application as Car Interiors for Noise Control,” Journal of Industrial Textiles, vol. 39 (3), p. 267–278.
  • 25. Das, S. 2001. The Cost of Automotive Polymer Composites: A Review and Assessment of DOE’s Lightweight Material Composites Resarch, U. S. Department of Energy, U.S.
  • 26. Ashby, M. F. 2011. Materials Selection in Mechanical Design, 4th Edition, ISBN: 978-1-85617-663-7, Elsevier, Elsevier-Butterworth-Heinemann, Oxford.
  • 27. Wikipedia. 2016. “Material Selection,” https://en.wikipedia.org/wiki/Material_selection. son erişim tarihi: 20.04.2016.
  • 28. Davies, G. 2003. Materials for Automobile Bodies, ISBN: 9780080969800, ButterworthHeinemann, Elsevier-Butterworth-Heinemann, Oxford.
  • 29. Lloyd, S., Scanlon, K., Lengacher, D. 2012. “Improving Life Cycle Assessment by Considering Worker Health and Comparing Alternatives Based on Relative Efficiency,” Sustainable Automotive Technologies, Proceedings of the 4th International Conference, 21–23 March 2012, Melbourne, Edited by: Subic A, Wellnitz J, Leary M, Koopmans L. 2012, Springer, New York, p. 305-311.
  • 30. Rathnaweera, G., Yvonne Durandet, D., Ruan, M. H. 2012. “Performance of Advanced High Strength Steel and Aluminium Alloy Tubes in Three-Point Bending,” Sustainable Automotive Technologies, p. 25–32.
  • 31. Carruth, M. 2011. Design Optimization Case Study: Car Structures, WellMet2050, University of Cambridge, Cambridge.
  • 32. Asiedu, Y., Gu, P. 1998. “Product Life Cycle Cost Analysis: State of the Art Review,” International Journal of Production Research, vol. 36 (4), p. 883–908.