BUJİ ATEŞLEMELİ BENZİNLİ MOTORA SAHİP TİPİK BİR OTOMOBİL İÇİN HİDROJEN DÖNÜŞÜM KİTİNİN MODELLENMESİ

Bu çalışmada, 4 silindirli buji ateşlemeli motora sahip tipik bir otomobil için hidrojen dönüşüm kiti modellenmiştir. Dönüşüm kitinin modellenmesi için literatürdeki çalışmalardan [18, 19, 20, 21] edinilen bilgi ve tecrübeler kullanılmıştır. Çalışmada ayrıca, taşımacılık yakıtı olarak hidrojenin teknik altyapısı incelenmiştir. Çalışma sonucunda; mevcut bir buji ateşlemeli motorun küçük modifikasyonla hidrojen motoruna dönüştürülebileceği, 4 silindirli buji ateşlemeli motora sahip tipik bir otomobil için hidrojen dönüşüm kiti maliyetinin yaklaşık 2000 $ olacağı tespit edilmiştir. Taşıt üzerinde hidrojenin depolanacağı sistemlerin geliştirilmesi ve yakıt ikmalinin yapılacağı hidrojen istasyonlarının kurulması ile içten yanmalı motorlu taşıtlarda yakıt olarak hidrojen kullanılabilecektir.

THE MODELING OF A HYDROGEN CONVERSION KIT FOR THE TYPICAL AUTOMOBILE SPARK-IGNITION GASOLINE ENGINES

In this study, hydrogen conversion kit was modeled for a typical automobile to having a 4-cylinder spark ignition gasoline engine. The knowledge and experience obtained to the literature studies [18, 19, 20, 21] were used for modelling of the hydrogen conversion kit. Also, the technical infrastructure of hydrogen as transportation fuel were investigated. As a result of study; it is determined that a spark ignition engine can be converted to hydrogen engine by minor modification. The hydrogen conversion kit for a typical automobile to having a 4-cylinder spark ignition gasoline engine has cost the approximately 2000 $. The hydrogen can be used to the vehicle to having internal combustion engine with development of hydrogen storing systems on the vehicle and the establishing of hydrogen refuelling stations.

___

  • 1. Verhelst, S., Sierens, R. 2001. “Hydrogen Engine-Specific Properties,” International Journal of Hydrogen Energy, vol. 26, p. 987-990.
  • 2. Das, L. M. 2002. “Hydrogen Engine: Research And Development (R&D) Programmer in Indian Institute of Technology (IIT),” International Journal of Hydrogen Energy, vol. 27, p. 953-965.
  • 3. Lavrive, J. F., Mahieu, V., Griesemann, J. C., Rickeard, D. J. 2004. “Well-to-Wheels Analysis of Future Automotive Fuels and Power Trains in the European Context,” SAE paper no: 2004-01-1924.
  • 4. Peschka, W. 1998. “Hydrogen: The Futures Cryofuel in Internal Combustion Engines,” International Journal of Hydrogen Energy, vol. 23, p. 27-43.
  • 5. Das, L. M., Gulati, R., Gupta, P. K. 2000. “Performance Evaluation of a Hydrogen-Fuelled Spark Ignition Engine Using Electronically Controlled Solenoid-Actuated Injection System,” International Journal of Hydrogen Energy, vol. 25, p. 569-579.
  • 6. Subramanian, V., Mallikarjuna, J. M., Ramesh, A. 2005. “Performance, Emission and Combustion Characteristics of a Hydrogen Fuelled SI Engine an Experimental Study,” SAE Int. Mobility Eng. Congr., Exposition: 23-25 October 2005.
  • 7. Lee, J. T., Kim, Y. Y., Lee, C. W. 2001. “An Investigation of a Cause of Backfire and its Control due to Crevice Volumes in a Hydrogen Fuelled Engine,” Trans ASME, vol. 123, p. 204-213.
  • 8. Tang, X. G., Daniel, M. K., Robert, J. N. 2002. “Ford P2000 Hydrogen Engine Dynamometer Development,” SAE paper no: 2002-01-0242.
  • 9. Gomes, A. J. M., Mikalsen, R., Roskilly, A.P. 2008. “An Investigation of Hydrogen-Fuelled HCCI Engine Performance and Operation,” International Journal of Hydrogen Energy, vol. 33, p. 5823-5828.
  • 10. Appleby, A. J. 1994. “Fuel Cells and Hydrogen Fuel,” International Journal of Hydrogen Energy, vol. 19, p. 175-180.
  • 11. Gambini, M., Vellini, M. 2005. “Comparative Analysis of H2/O2 Cycle Power Plants Based on Different Hydrogen Production Systems from Fossil Fuels,” International Journal of Hydrogen Energy, vol. 30, p. 593-604.
  • 12. Solovyev, E. A., Kuvshinov, D. G., Ermakov, D. Y., Kuvshinov, G. G. 2009. “Production of Hydrogen and Nanofibrous Carbon by Selective Catalytic Decomposition of Propane,” International Journal of Hydrogen Energy, vol. 34, p. 1310-1332.
  • 13. Karim, G. A. 2003. “Hydrogen as a Spark Ignition Engine Fuel,” International Journal of Hydrogen Energy, vol. 28, p. 569-577.
  • 14. Silva, E. P., Gallo, W. L. R., Szajner, J., Amaral, E. G., Bezerra, C. R. 1993. “State of the Art in the Use of Hydrogen as an Automotive Fuel,” SAE paper no: 931706E.
  • 15. Cox, K. E., Williamson, K. D. 1977. Hydrogen: Its Technology and Implications, vol. I–V, Boca Raton, FL: CRC Press, USA.
  • 16. Veziroglu, T. N., Barbir, F. 1995. “Transportation Fuel-Hydrogen,” Energy Technology and the Environment, Wiley-Interscience, vol. 4, p. 712-730.
  • 17. Veziroglu, T. N. 2007. “21st Century’s Energy: Hydrogen Energy System,” Energy Conversion and Management, vol. 49, p. 9-31.
  • 18. Gürbüz, H., Buran, D., Akçay, İ. H. 2013. “An Experimental Study on Performance and Cyclic Variations in a Spark Ignition Engine Fuelled with Hydrogen and Gasoline,” Journal of Thermal Science and Technology, vol. 33 (1), p. 33-41.
  • 19. Gürbüz, H., Buran, D., Akçay, İ. H. 2011. “Buji Ateşlemeli Hidrojen Motorunda Karışım Oranı ve Ateşleme Avansının Motor Performansına ve Çevrimler Arası Farka Etkisinin Deneysel Araştırılması,” Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, cilt 26, no 1, p. 105-114.
  • 20. Gürbüz, H., Akçay, İ. H., Buran, D. 2014. “An Investigation on Effect of in-Cylinder Swirl Flow on Performance, Combustion and Cyclic Variations in Hydrogen Fuelled Spark Ignition Engine,” Journal of the Energy Institute, vol. 87, p. 1–10.
  • 21. Gürbüz, H. 2010. “Tek Silindirli Hidrojen Motorunda Yanma Optimizasyonu,” Doktora Tezi, Süleyman Demirel Üniversitesi, Fen bilimleri Enstitüsü, Makine Mühendisliği Anabilim Dalı, Isparta.
  • 22. Gürbüz, H., Akçay İ. H. 2013. “Buji Ateşlemeli Hidrojen Motorunda Ateşleme Avansı ve Sıkıştırma Oranının Performans ve NOx Emisyonuna Etkisi,” Politeknik Dergisi, cilt 16, sayı 1, s. 45-50.