A REVIEW ON LABORATORY SCALE MACHINES SUPPORTING R&D STUDIES USED IN FILAMENT YARN TECHNOLOGY

Lots of R&D and P&D studies are carried out in the laboratory conditions with the low-capacity types of industrial machines. Laboratory type filament yarn machines are important in Textile Sector as they form the important infrastructure/facility for research and development studies and lots of studies are carried out in the textile sector about production of filament yarn and the development of its properties. In this study, laboratory type machines used in research studies on filament yarns have been investigated worldwide and their properties have been presented in detail. Then, the technical features and usage purposes of a laboratory type filament drawing machine developed with a new design in its field are explained. In addition, the features of this machine have been compared with another laboratory type machines.

FİLAMENT İPLİK TEKNOLOJİSİNDE KULLANILAN VE AR-GE ÇALIŞMALARINI DESTEKLEYEN LABORATUVAR ÖLÇEKLİ MAKİNALAR ÜZERİNE BİR İNCELEME

Sanayi tipi makinelerin düşük kapasiteli üretim yapan türleri sayesinde, laboratuvar ortamında birçok Ar-Ge ve Ür-Ge çalışması gerçekleştirilmektedir. Bu tür makinelerden biri olan laboratuvar tipi filament iplik makineleri, araştırma çalışmalarına zemin oluşturduğu için Tekstil Sektöründe önemli bir yere sahiptir ve Tekstil sektöründe filament iplik üretimi ve özelliklerinin geliştirilmesine yönelik olarak birçok çalışma yapıldığı bilinmektedir. Bu çalışmada, filament ipliklere dair araştırma çalışmalarında kullanılan laboratuvar tipi makineler dünya genelinde araştırılmış ve özellikleri detaylı olarak incelenmiştir. Sonrasında, alanında yeni bir tasarımla geliştirilmiş olan laboratuvar tipi bir filament iplik makinesinin teknik özellikleri ve kullanım amaçları açıklanmıştır. Ayrıca, bu makinenin özellikleri diğer laboratuvar tipi makinelerin özellikleri ile kıyaslanmıştır.

___

  • Abbasi, M., Mojtahedi, M. R. M., & Khosroshahi, A. (2007). Effect of spinning speed on the structure and physical properties of filament yarns produced from used PET bottles, Journal of Applied Polymer Science, 103, Issue 6, pp. 3972-3975. Doi: https://doi.org/10.1002/app.25369.
  • Ahmed, S. I., Shamey, R., Christie, R. M., & Mather, R. R. (2006). Comparison of the performance of selected powder and masterbatch pigments on mechanical properties of mass coloured polypropylene filaments, Coloration Technology, 122(5), 282–288. Doi: https://doi.org/10.1111/j.1478-4408.2006.00042.x
  • Arslan, Z. (2016). Investigation of process parameters affecting quality of polyamide 6 POY and textured yarn production, (MSc. Thesis), Namık Kemal University Institute of Natural and Applied Sciences, Tekirdağ/Turkey.
  • Babaarslan, O., & Özkan Hacıoğulları, S. (2013). Effect of fibre cross-sectional shape on the properties of POY continuous filaments yarns, Fibers and Polymers, 14(1), 146-151. Doi: https://doi.org/10.1007/s12221-013-0146-z.
  • Bagheri, G., Tavanai, H., Ghiaci, M., Morshed, M., & Shamsabadi, A.S. (2019). An investigation on the effect of pigments on the texture-ability and mechanical properties of polypropylene BCF yarns, Journal of the Textile Institute, 111(9), 1308-1317. Doi:10.1080/00405000.2019.1694824.
  • Bansal, S., & Raichurkar, P. (2016). Review on the manufacturing processes of polyester-PET and nylon-6 filament yarn, International Journal on Textile Engineering and Processes, 2(3), 23-28. Bhattacharya, S. S., & Chaudhari, S. B. (2015). Study on structural and thermal properties of polypropylene silica nanocomposite filaments, International Journal of Textile and Fashion Technology (IJTFT), 5(1), 15-22.
  • Bourbigot, S., & Devaux, E. (2002). Flammability of polyamide-6/clay hybrid nanocomposite textiles, Polymer Degradation and Stability, 75(2), 397-402. Doi: https://doi.org/10.1016/S0141-3910(01)00245-2.
  • Busschaert Engineering. (2022). Spinboy Machines. Retrieved from: http://www.busschaert-eng.be/English/HomeEnglish.htm. Castiglioni, M. (2008). Control and stability in velocity of individually driven drawing godets for thermoplastic filament yarns (PhD Thesis), ETH Zurich, Switzerland. ChinaFiber XinLun Co., Ltd. (2022). Spinning Tester Equipment for Laboratory and University College, Melt Spinning Machine Trial Production Line, Pilot Plant for Melt Spinning. Retrieved from: http://www.chinafiber.com/tester/.
  • Chiu, C-W., Lin, C-A., & Hong, P-D. (2011). Melt-Spinning and thermal stability behavior of TiO2 nanoparticle/polypropylene nanocomposite fibers, Journal of Polymer Research, 18(3), 367–372. Doi: https://doi.org/10.1007/s10965-010-9426-0.
  • Chung, C. I. (2020). Extrusion of Polymers Theory & Practice 3nd Edition, Munich: Hanser Gardner.
  • Çelen, O., & Koçer, H. B. (2022). The effect of cross section on poly (L -Lactic Acid) filament yarn properties, Uludağ University Journal of The Faculty of Engineering, 27(1), 375-388. Doi: https://doi.org/10.17482/uumfd.1017015.
  • Çirkin, S. (2006). Effect of the texturing variables on the yarn properties during false-twist texturing process (MSc Thesis), Çukurova University Institute of Natural and Applied Sciences, Adana.
  • Dabrowska, I., Fambri, L., Pegoretti, A., Slouf, M., Vackova, T., & Kolarik, J. (2015). Spinning, drawing and physical properties of polypropylene nanocomposite fibers with fumed nanosilica, eXPRESS Polymer Letters, 9(3), 277-290. Doi: 10.3144/expresspolymlett.2015.25.
  • Dulmalik, A Chafidz, R Fernandi, & Ardianto. (2019). Partially Oriented Yarn (POY) produced from semi-dull via melting spun using an extruder: Effect of die extruder temperature on elongation of the POY, Journal of Physics: Conference Series, 1295, The 3rd International Conference of Chemical and Materials Engineering, Semarang, Indonesia.
  • Engelhardt, A. W. (2021). Global development of spun and filament yarns, The Fiber Year 2021 Report.
  • Erdem, N., A. Cireli, A., & Erdogan, U. H. (2009). Flame retardancy behaviors and structural properties of polypropylene/nano-SİO2 composite textile filaments, Journal of Applied Polymer Science, 111(4), 2085-2091. Doi: https://doi.org/10.1002/app.29052.
  • Feldman, D. (2008). Polymer History, Designed Monomers and Polymers, 11(1), 1-15. Doi: https://doi.org/10.1163/156855508X292383. Fiber Extrusion Research&Pilot Machines for Homo&Bicomponent Laboratory Applications. (2022). Retrieved from: http://www.hillsinc.net/assets/pdfs/pilot-equipment.pdf.
  • Fourné Maschinenbau. (2022). Fourné Laboratory and Pilot Melt Spintester. Retrieved from: https://fourne-maschinenbau.de/en/pilot-schmelzspinntester-2/.
  • Gajjar, C. R., Stallrich, J. W., Pasquinelli, M. A., & King, M. W. (2021). Process-property relationships for melt-spun poly(lactic acid) yarn, ACS Omega, 6, 15920-15928. Doi: 10.1021/acsomega.1c01557.
  • GM Gülnar. (2023). Laboratory Type Textile Machines Spintech. Retrieved from: https://www.gulnarmakina.com/eng/urunler.aspx?kat=1.
  • Guangzhou Guanxin Machinery Limited. (2022). What Is L/D ratio in injection moulding machine. Retrieved from: https://guanxin-machinery.com/what-is-l-d-ratio-in-injection-moulding-machine.
  • Gupta, V.B., Mondal, S.A., & Bhuvanesh, Y.C. (1997). Spinning speed-throughput rate relationships for polyester, nylon, and polypropylene fibers, Journal of Applied Polymer Science, 65(9), 1773-1788. Doi: https://doi.org/10.1002/(SICI)1097-4628(19970829)65:9<1773::AID-APP14>3.0.CO;2-O.
  • Hacıoğulları Özkan. S. (2014). Design and manufacture of laboratory type filament yarn machine and development of original product (PhD Thesis). Çukurova University Institute of Natural and Applied Sciences, Adana, Turkey. Retrieved from: http://libra.cu.edu.tr/libra.aspx?IS=DETAY&KN=9994.
  • Hacıoğulları Özkan S. & Babaarslan, O. (2014). Structural analysis and mechanical properties of polypropylene filament yarns containing flame retardant additive, 15th Romanian Textiles and Leather Conference-CORTEP-2014, 25-30, Poiana Braşov, Romanya.
  • Hacıoğulları Özkan S. & Babaarslan, O. (2015). Design, manufacturing of a new laboratory type filament yarn drawing machine and featured yarn development studies, Marmara Journal of Pure and Applied Sciences, Special Issue-1, 27(5), 53-57. Doi: https://doi.org/10.46399/muhendismakina.1136513
  • Hacıoğulları Özkan, S. & Babaarslan, O. (2018). An investigation on the properties of polyester textured yarns produced with different fiber cross-sectional shapes, Industria Textila, 69(4), 270-276. Doi: http://doi.org/10.35530/IT.069.04.1281.
  • Heuvel, H. M. and Huisman, R. J. (1978). Effect of winding speed on the physical structure of as-spun poly(ethylene terephthalate) fibers, Including Orientational-Induced Crystallization, 22(8), 2229-2243. Doi: https://doi.org/10.1002/app.1978.070220815.
  • Ho, Y. S., Kim, H. Y., Jin, F. L., & Park, S. J. (2010). Effects of spinning conditions on properties of polyester yarn prepared using an ultra-high-speed melt spinning technique equipped with a steam chamber”, Bulletin of the Korean Chemical Society, 31(11), 3252-3258. Doi: https://doi.org/10.5012/bkcs.2010.31.11.3252.
  • Hojiyev, R., & Ulcay, Y. (2021). Polyester yarns reinforced by nanoclays, Polymer Science Series A, 63(3), 318-333. Doi:10.1134/S0965545X21030068
  • Hufenus, R. (2011). Fiber Development by Multicomponent Melt-Spinning, 11th World Textile Conference AUTEX, 8-10 June 2011h, Mulhouse/France.
  • Hufenus, R., Yan, Y., Dauner, M., and Kikutani, T. (2020). Melt-Spun fibers for textile applications, Materials, 13(4298), 2-32. Doi: 10.3390/ma13194298.
  • Kalantari, B., Rahbar, R. S., Mojtahedi, M. R. M., Shoushtari, S. A. M., & Khosroshahi, A. (2007). Production and characterization of polypropylene fiber upon addition of selective peroxide during melt spinning and comparison with conventional polypropylene fibers, Journal of Applied Polymer Science, 105(4), 2287-2293. Doi: 10.1002/app.26255.
  • Kara, Ş., Erdoğan, Ü. H., & Erdem, N. (2012). Effect of polypropylene fiber cross sectional shapes on some structural/mechanical fiber properties and compressibility behaviour of plain knitted fabrics, Fibers and Polymers, 13(6), 790-794. Doi: https://doi.org/10.1007/s12221-012-0790-8.
  • Kara, Ş., Üreyen, M. E., & Erdogan, U. H. (2016). Structural and antibacterial properties of PP/CuO composite filaments having different cross sectional shapes, International Polymer Processing XXXI, 31(4), 398-409. Doi: https://doi.org/10.3139/217.3159.
  • Karaca, E., & Özçelik, F. (2007). Influence of the cross‐sectional shape on the structure and properties of polyester fibers, Journal of Applied Polymer Science, 103(4), 2615-2621. Doi: https://doi.org/10.1002/app.25350.
  • Kebabçı, M., Babaarslan, O., Hacıoğulları Özkan, S., & Telli, A. (2015). The effect of drawing ratio and cross-sectional shapes on the properties of polypropylene CF and BCF yarns, Journal of Textiles and Engineer, 22(100), 47-53. Doi: http://dx.doi.org/10.7216/1300759920152210006
  • Kılıç, A., Jones, K., Shim, E., & Pourdeyhimi, B. (2016). Surface crystallinity of meltspun isotactic polypropylene filaments, Macromolecular Research, 24(1), 25-30. Doi: https://doi.org/10.1007/s13233-016-4011-y.
  • Kim, S. L. (1986). Effects of spinning speed and quench air temperature on the characteristics of melt spun poly(ethylene terephthalate) yarn, Textile Research Journal, 56(11), 697-704. Doi: https://doi.org/10.1177/004051758605601108.
  • Kim, N. K., Lin, R. J. T., & Bhattacharyya, D. (2017). Flammability and mechanical behaviour of polypropylene composites filled with cellulose and protein based fibres: A comparative study, Composites Part A: Applied Science and Manufacturing, 100, 215-226. Doi: https://doi.org/10.1016/j.compositesa.2017.05.017.
  • Kotek R., Afshari M., Avci H., & Najafi M. (2017). Production of Polyolefins, United States: Woodhead Publishing, Elsevier.
  • Kothari, V.K. (2000). Progress in Textiles: Science and Technology, New Delhi/India: Hardbound, IAFL Publications.
  • Kretzschmar, S. D., & Furter, R. (2009). Process Optimization in a Filament Yarn Plant, Pakistan Textile Journal, Uster Technologies AG., Uster, Switzerland.
  • Lewandowski, A., & Wilczynski, K. (2022). Modeling of Twin Screw Extrusion of Polymeric Materials, Polymers, 14(274), 2-28.
  • Lohia Corp Limited. (2022). Multifilament Spin-Draw-Wind Lines Document. Retrieved from: https://www.lohiagroup.com/baby-lofil.
  • Maqsood, M., Langensiepen, F., & Seide, G. (2020). Investigation of melt spinnability of plasticized polylactic acid biocomposites-containing intumescent flame retardant, Journal of Thermal Analysis and Calorimetry, 139(1), 305–318. Doi: https://doi.org/10.1007/s10973-019-08405-3.
  • Misra,F.-M., S., Spruiell, Lu, J., & Richeson, E. G. C. (1995). Influence of molecular weight distribution on the structure and properties of melt-spun polypropylene filaments, Journal of Applied Polymer Science, 56(13), 1761-1779. Doi: https://doi.org/10.1002/app.1995.070561307.
  • Morgan, P. W. (2006). Brief history of fibers from synthetic polymers, Journal of Macromolecular Science: Part A-Chemistry, 15(6), 1113-1131. Doi: https://doi.org/10.1080/00222338108066456.
  • Mylläri, V. (2010). Production of filament yarns made of PEEK (Master of Science Thesis). Tampere University of Technology, Finland.
  • Nakajima, T. (2000). Advanced fiber spinning technology. Wiltshire, England: Woodhead Publishing.
  • Ni, H., Li, Y., and Chen, Z. (2020). Study on preparation and properties of luminescent polyamide fiber doped with graphene, 6th Annual International Workshop on Materials Science and Engineering: Journal of Physics Conference Series, 1-7, Jinan, Shandong, China. Doi: 10.1088/1742-6596/1622/1/012038.
  • Özkan, S. (2008). The effect of filament cross sectional shape, number and linear density on POY and textured yarn properties, (Msc. Thesis), Çukurova University Institute of Natural and Applied Sciences, Adana/Turkey.
  • Pal, S.K., Gandhi, R.S., & Kothari, V.K. (1996). Draw-Texturing of microfiber polyester yarn, Textile Research Journal, 66(12), 770-776. Doi: https://doi.org/10.1177/004051759606601205
  • Pelzer, M., Vad, T., Becker, A., Gries, T., Markova, S., & Teplyakov, V. (2021). Melt spinning and characterization of hollow fibers from poly(4-methyl-1-pentene), Journal of Applied Polymer Science, 138(1), 1-12. Doi: https://doi.org/10.1002/app.49630
  • Raichurkar, P., & Ramachandran, M. (2015). Recent trends and developments in textile industry in India, International Journal on Textile Engineering & Processes, 1(4), 47-49.
  • Ramirez, M. I., Bashir, S., Luo, Z., & Liu, J.L. (2009). Green synthesis and characterization of polymer-stabilized silver nanoparticles, Colloids and Surfaces B: Biointerfaces, 73(2), 185-191. Doi: https://doi.org/10.1016/j.colsurfb.2009.05.015.
  • Rangasamy, L., Shim, E., & Pourdeyhimi, B. (2011). Structure and tensile properties of nanoclay-polypropylene fibers produced by melt spinning, Journal of Applied Polymer Science, 121(1), 410-419. Doi: 10.1002/app.33619.
  • Ruckdashel, R., & Shim, E. (2020). Effects of melt spinning parameters on polypropylene hollow fiber formation, Journal of Engineered Fibers and Fabrics, 15, 1-11. Doi: https://doi.org/10.1177/1558925019899680.
  • Salem, D. R. (1992). Development of crystalline order during hot-drawing of poly(Ethylene Terephthalate) film: Influence of strain rate, Polymer, 33(15), 3182-3188. Doi: https://doi.org/10.1016/0032-3861(92)90232-L.
  • Salem, D. R. (2001). Structure formation in polymeric fibers: Structure formation during melt spinning. Princeton, USA: Hanser Gardner Publication.
  • Shin, K.I., Kim, S.H., & Kim, I-J. (2005). Image analysis of the luster of fabrics with modified cross-section fibers, Fibers and Polymers, 6(1), 82-88. Doi: https://doi.org/10.1007/BF02875578.
  • Shumpert, B. B., Padsalgikar, A. D., Ellison, M. S., Hosangadi, G. S., & Henshaw, I. (1996). Gear pump performance in polypropylene filament yarn uniformity, International Polymer Processing, 11(4), 347-351. Doi: https://doi.org/10.3139/217.960347.
  • SML Maschinengesellschaft mbH. (2022). Line Types, Austrofil®. Retrieved from: https://www.sml.at/multifilament-lines/austrofil-fdy-mdy-poy#austrofil-ht-2x2-4-e-75.
  • Subasinghe, A., Somashekar, A. A., & Bhattacharyya, D. (2018). Effects of wool fibre and other additives on the flammability and mechanical performance of polypropylene/kenaf composites, Composites Part B: Engineering, 136(1), 168-176. Doi: https://doi.org/10.1016/j.compositesb.2017.10.034.
  • Şahin, R. (2018). Investigation of the dyeability properties of polypropylene nonwoven surfaces with amorf silic”, (MSc. Thesis), Erciyes University Graduate School of Natural and Applied Sciences, Kayseri/Turkey.
  • Şen, S. C. (2015). Synthesis of polymer films at different ratios by using twin screw extruder and investigation of their biodegradability under controlled composting conditions, (MSc. Thesis). Hacettepe University Graduate School of Science and Engineering, Ankara/Turkey.
  • Tavanai, H., Morshed, M., & Hosseini, S. M. (2003). Effects of On-line melt blending of polypropylene with polyamide 6 on the bulk and strength of the resulting BCF yarn, Iranian Polymer Journal, 12(5), 421-430.
  • Turukmane, R., Gulhane, S. S., & Kakde, M. V. (2020). Effect of take-up speed on the final performance of fully drawn yarn (FDY), Man-Made Textiles in India, 48(1), 12-14.
  • Turukmane, R., Shinde, S., Gulhane, S., & Gupta, K. K. (2021). Effect of spinneret shapes on the properties of polyester filament, Chemical Fibers International, 71(3), 130-131.
  • Vahabi, H., Laoutid, F., Formela, K., Saeb, M. R., & Dubois, P. (2022). Flame-Retardant polymer materials developed by reactive extrusion: Present status and future perspectives, Polymer Reviews, 62, 919-949. Doi: https://doi.org/10.1080/15583724.2022.2052897.
  • Varma, D. S., & Cameotra, S. S. (1973). Effect of draw ratio on moisture sorption, dyeability, and mechanical properties of cold-drawn nylon 6 filament, Textile Research Journal, 43(12), 745-747. Doi: https://doi.org/10.1177/004051757304301210.
  • Varshney, R. K., Kothari, V. K., & Dhamija, S. (2011). Influence of polyester fibre fineness and cross‐sectional shape on low‐stress characteristics of fabrics, Journal of the Textile Institute, 102(1), 31-40. Doi: https://doi.org/10.1080/00405000903453661.
  • Varshney, R. K., Kothari, V. K., & Dhamija, S. (2014). Influence of polyester fibre shape and size on the hairiness and some mechanical properties of yarns, Indian Journal of Fibre & Textile Research, 39, 24-32.
  • Viková, M., Periyasamy, A. P., Vik, M. and Ujhelyiová, A. (2017). Effect of drawing ratio on difference in optical density and mechanical properties of mass colored photochromic polypropylene filaments, The Journal of The Textile Institute, 108(8), 1365-1370. Doi: https://doi.org/10.1080/00405000.2016.1251290.
  • Viková, M., Sakurai, S., Periyasamy, A. P., Yasunaga, H., Pechočiaková, M., & Ujhelyiová, A. (2021). Differential scanning calorimetry/small-angle X-ray scattering analysis of ultraviolet sensible polypropylene filaments, Textile Research Journal, 92(17-18), 3142-3153. Doi: https://doi.org/10.1177/00405175211053394.
  • Vogel, R., Hatzikiriakos, S. G., Brünig, H., Tändler, B., & Golzar, M. (2003). Improved spinnability of metallocene polyethylenes by using processing aids, International Polymer Processing XVIII, 18(1), 67-74. Doi: https://doi.org/10.3139/217.1722.
  • Yıldırım, K. (2007). Determination of Degree of Production Parameters Influences to the Cristallinity Ratio on the PET Yarn (PhD Thesis), Uludağ University Graduate School of Natural and Applied Science, Bursa/Turkey.
  • Younes, B., Fotheringham, A., El-Dessouky, H., & Haddad, G. (2011). Factorial optimization of the effects of melt-spinning conditions on as-spun aliphatic-aromatic copolyester fibers I. spin draw ratio, overall orientation and drawability, International Journal of Polymeric Materials, 60(5), 316-339. Doi: https://doi.org/10.1080/00914037.2010.531804.
  • Yuan, X., Mak, A. F. T., Kwok, K. W., Yung, B. K. O., & Yao, K. (2001). Characterization of poly(L-lactic acid) fibers produced by melt spinning, Journal of Applied Polymer Science, 81, 251-260. Doi: https://doi.org/10.1002/app.1436.
  • 8.5" Wide Wayne Lab Sheet Roll Stack. (2022). Retrieved from: https://www.arlingtonmachinery.com/product-detail/18478/85quot-wide-wayne-lab-sheet-roll-stack/.