PTD YAKLAŞIMININ BİR UYGULAMASI: ÜÇGENSEL SİLİNDİRDEN GERİ SAÇILIM

Bu makalenin amacı, bir yüzeyi soft (elektrik), diğer iki yüzeyi hard (manyetik) olan üçgensel sonsuz silindirden geri saçılımın incelenmesi ve bu geometrinin saçılım özelliklerinin açığa çıkarılmasıdır. Bu makalede, uzak alandaki geri saçılma, etkili yüksek frekans yaklaşımlarından biri olan Kırınımın Fiziksel Teorisi (KFT) ile incelenmiştir. Birinci mertebeden KFT yaklaşımı, birincil ayrıt dalgalarının toplamı şeklinde elde edilmiştir. Radar kesit alanında minimumlara sahip olan grafiksel sonuçlar, bu geometrinin görünmezlik teknolojisinin uygulamalarında önemli olabileceğini göstermektedir. Makalede kullanılan KFT yöntemi, radar kesit alanının (RKA) trigonometrik fonksiyonları kullanarak kolayca hesaplanmasını sağlamaktadır.

AN APPLICATION OF PRIMARY PTD APPROXIMATION: BACKSCATTERING AT TRIANGULAR CYLINDER

The purpose of the paper is to investigate the backscattering at a triangular cylinder with one soft (electric) face and two hard (magnetic) faces and to reveal the scattering properties of the geometry. In the paper, the backscattered field in the far-zone is introduced using the Physical Theory of Diffraction (PTD), one of the powerful high-frequency approximation techniques. First-order PTD approximation is obtained as a sum of the primary edge waves. Graphical results that have minimums in the radar cross-section represent the importance of geometry in applications of stealth technology. The method used in the paper allows the radar cross section (RCS) to calculate easily using simple trigonometric functions.

___

  • [1]. Ufimtsev, P. Ya., “Comments on diffraction principles and limitations for RCS reduction techniques”, Proc. IEEE, Vol. 84, No. 12, pp. 1828-1851, 1996.
  • [2]. Morse, B. J., “Diffraction by polygonal cylinders”, Journal of Mathematical Physics, Vol. 5, No. 2, pp. 199-214, 1964.
  • [3]. Wu, J., and Mostafavi, M., “Higher order UTD analysis of a conducting triangular cylinder excited by a magnetic line source”, IEEE Transaction on Magnetics, Vol. 29, No. 2, pp. 1650-1652, 1993.
  • [4]. Sunahara, Y., Kaniya, S., Aoki, H., Sato, S., Mano, S., “Backscattering from triangular cylinder and hexahedron”, Antennas and Propagation Society International Symposium IEEE Philadelphia, USA, 1986.
  • [5]. Illyashenko, L. N., “Electromagnetic backscattering from a triangular dielectric cylinder”, 9th International Conference on Mathematical Methods in Electromagnetic Theory, Kiev, Ukraine, 2002
  • [6]. Ufimtsev, P. Ya., Fundamentals of the Physical Theory of Diffraction, John Wiley & Sons, Inc., Hoboken, USA, First ed. 2007, second ed. 2014.
  • [7]. Sukharevsky, I. O., Nosich, A. I., and Altintas, A., “Manipulation of backscattering from a dielectric cylinder of triangular cross-section using the interplay of GO-like ray effects and resonances”, IEEE Transactions on Antennas Propagation, Vol. 63, No. 5, pp. 2162-2168, 2015.
  • [8]. Hacivelioglu, F., Apaydin, G., Sevgi, L., Ufimtsev, P. Ya., “Diffraction at trilateral cylinders with combinations of soft and hard faces: first-order PTD approximation”, Electromagnetics, Vol. 38, No. 4, pp. 217-225, 2018.
  • [9]. Hacivelioglu, F., “Backscattering from soft-hard triangular cylinder: Primary PTD approximation”, TWMS Journal of Applied and Engineering Mathematics, Vol. 10, No. 1, pp. 181-189, 2020.
  • [10]. Ufimtsev, P. Ya., Apaydin, G., “Cancellation and shifts of specular reflections from soft-hard triangular cylinders”, IEEE Transactions on Antennas and Propagation, 19 August 2020.
  • [11]. Ufimtsev, P. Ya., “Diffraction at a wedge with one face electric and the other face magnetic”, IEEE Antennas and Propagation Magazine, Vol. 55, No. 5, pp. 63-73, 2013.
  • [12]. Hacivelioglu, F., Sevgi, L., and Ufimtsev, P. Ya., “Backscattering from a soft-hard strip: Primary edge waves approximations”, IEEE Antennas and Wireless Propagation Letters, Vol. 12, pp. 249-252, 2013.