PASİF SU HASADI İÇİN DİKEY, EĞİMLİ VE YATAY YÜZEYLERİN YOĞUŞMA PERFORMANSININ ANALİTİK ARAŞTIRMASI

Yoğuşma hasadı, bir yüzey üzerinde yoğunlaşan nemli havadaki su buharından su elde edilmesi olgusudur. Fikir, ek enerji tüketimi olmayan pasif bir tekniktir, ancak bir yüzeyin yoğuşma performansı birçok parametreye göre değişir. Bu çalışma, laminer, dalgalı ve türbülanslı akış rejimleri altında dikey, eğimli ve yatay su toplama sistemlerinin yoğuşma performansını analitik olarak araştırmaktadır. İlk olarak, bir yoğuşma filminde sınır tabakasının gelişimini ifade etmek için viskoz etkiler, atalet ve yerçekimi kuvvetleri ayrıntılı olarak incelenir. Ardından, her yüzey yönünün ve eğim açılarının yoğuşma performansı belgelenir ve tüm akış koşulları için karşılaştırılır. Dikey yüzeyler eğimli ve yatay sistemlere göre daha yüksek kondens toplama performansına sahip olsa da, 15⁰ eğim açısına kadar yoğuşma oranı sadece yaklaşık %2 daha düşüktür. Hasat yüzeyi 30⁰ eğildiğinde, laminer filmin yoğunlaşma oranı %3,5 azalırken, dalgalı-türbülanslı film yoğunlaşmasında azalma yaklaşık %4,7'dir. Sonuçlar, 45⁰ eğim açısımdan sonra değişimin daha belirgin olduğunu göstermektedir. Ayrıca, 89⁰ eğimli yüzeyler, laminer ve dalgalı-türbülanslı rejimlerde sırasıyla %63,7 ve %74,1 daha düşük yoğuşma hasadı yaşar. Ek olarak, aynı yatay yüzeyler, dikey bir sistemin yalnızca beşte biri yoğuşma oranı üretir.

ANALYTICAL INVESTIGATION ON THE CONDENSATION PERFORMANCE OF VERTICAL, TILTED AND HORIZONTAL SURFACES FOR PASSIVE WATER HARVESTING

Condensate harvesting is the phenomenon of obtaining water from water vapor in the humid air condensing on a surface. The idea is a passive technique with no additional energy consumption, yet condensation performance of a surface varies with many parameters. This study analytically investigates the condensation performance of the vertical, tilted, and horizontal water harvesting systems. First, viscous effects, inertia, and gravitational forces are examined in detail to express the evolution of boundary layer in condensation film. Then the condensation performance of each surface orientation and tilt angles are documented and compared for all flow conditions. Although vertical surfaces have higher condensate harvesting performance compared to the tilted and horizontal systems, the condensation rate is only about 2% lower up to 15⁰ tilt angle. When the harvesting surface is tilted at 30⁰, the condensation rate of the laminar film decreases by 3.5%, while the reduction is 4.7% in wavy-turbulent film condensation. The results indicate that the change in condensation rate is more evident just after 45⁰ tilt. Furthermore, 89⁰ tilted surfaces experience 63.7% and 74.1% lower condensate harvesting in laminar and wavy-turbulent regimes, respectively. In addition, identical horizontal surfaces produce only one fifth condensation rate of a vertical system.

___

  • Liu, X., Beysens, D. and Bourouina, T., “Water harvesting from air: Current passive approaches and outlook”, ACS Materials Letters, 4, 5, 1003-1024, 2022.
  • Tu, Y.D., Wang, R.Z., Zhang, Y.N. and Wang, J.Y., “Progress and expectation of atmospheric water harvesting”, Joule, 2, 1452–1475, 2018.
  • Zhuang, S., Qi, H., Wang, X., Li, X., Liu, K., Liu, J. and Zhang, H., “Advances in solar-driven hygroscopic water harvesting”, Global Challenges, 5, 2000085, 2021.
  • Bergmair, D., Metz, S.J., de Lange, H.C. and Steenhoven, A.A., “System analysis of membrane facilitated water generation from air humidity”, Desalination, 339, 26-33, 2014.
  • Clus, O., Ortega, P., Muselli, M., Milimouk, I. and Beysens, D., “Study of dew water collection in humid tropical islands”, Journal of Hydrology, 361, 159-171, 2008.
  • Lu, H., Shi, W., Guo, Y., Guan, W., Lei, C. and Yu, G., “Materials engineering for atmospheric water harvesting: Progress and perspectives”, Advanced Materials, 34, 12, 2110079, 2022.
  • Hanikel, N., Prévot, M.S. and Yaghi, O.M., “MOF water harvesters”, Nat. Nanotechnol., 15, 348-355, 2020.
  • Tu, R., Hwang, Y. “Reviews of atmospheric water harvesting technologies”, Energy, 201, 117630, 2020.
  • Jarimi, H., Powell, R. and Riffat, S., “Review of sustainable methods for atmospheric water harvesting”, International Journal of Low-Carbon Technologies, 15, 253, 2020.
  • Zhou, X., Lu, H., Zhao, F., and Yu, G., “Atmospheric water harvesting: A review of material and structural designs”, ACS Materials Letters, 2, 671-684, 2020.
  • Poredoš, P., Petelin, N., Vidrih, B., Žel, T., Ma, Q., Wang, R. and Kitanovski, A., “Condensation of water vapor from humid air inside vertical channels formed by flat plates”, iScience, 25, 103565, 2022.
  • Fujii, T., Theory of Laminar Film Condensation. Springer-Verlag, New-York, 1991.
  • Nilsson, T., Vargas, W., Niklasson, G., and Granqvist, C., “Condensation of water by radiative cooling”, Renewable Energy, 5, 310-317, 1994.
  • Trosseille, J., Mongruel, A., Royon, L. and Beysens, L., “Radiative cooling for dew condensation”, International Journal of Heat and Mass Transfer, 172, 21160, 2021.
  • Trosseille, J., Mongruel, A., Royon, L. and Beysens, L., “Effective substrate emissivity during dew water condensation”, International Journal of Heat and Mass Transfer, 183, 122078, 2022.
  • Beysens, D., Muselli, M., Milimouk, I., Ohayon, C., Berkowicz, S.M., Soyeux, E., Mileta, M. and Ortega, P., “Application of passive radiative cooling for dew condensation”, Energy, 31, 2303-2315, 2006. ,
  • Tomaszkiewicz, M., Abou Najm, M., Beysens, D., Alameddine, I. and El-Fadel, M., “Dew as a sustainable non-conventional water resource: a critical review”, Environmental Reviews, 23, 425-442, 2015.
  • Beysens, D., Steyer, A., Guenoun, P., Fritter, D. and Knobler, C., “How does dew form?”, Phase Transitions, 31, 219–246, 1991.
  • Clus, O., Ortega, P., Muselli, M., Milimouk, I. and Beysens, D., “Study of dew water collection in humid tropical islands”, Journal of Hydrology, 361, 159–171, 2008.
  • Beysens, D., Milimouk, I., Nikolayev, V., Muselli, M. and Marcillat, J., “Using radiative cooling to condense atmospheric vapor: A study to improve water yield”, J Journal of Hydrology, 276, 1–11, 2003.
  • Faghri, A. and Zhang, Y., Fundamentals of Multiphase Heat Transfer and Flow, Springer, New-York, 2020.
  • Fox, R.W., McDonald, A.T., Pritchard, P.J. and Mitchell, J.W., Introduction to Fluid Mechanics, Wiley, China, 2014.
  • Bejan, A., Convection Heat Transfer, Wiley, New Jersey, 2013.
  • Chen, C.J. and Jaw, S.Y., Fundamentals of Turbulence Modeling, Taylor & Francis, Washington, 1997.
  • Bejan, A. and Kraus, A.D., Heat Transfer Handbook, Wiley, New Jersey, 2003.
  • Incropera, F.P., Dewitt, D.P., Bergman, T.L. and Lavine, A.S., Principles of Heat and Mass Transfer, Wiley, Singapore, 2017.
  • Cengel, Y.A., Heat Transfer, A Practical Approach, Mc Graw Hill, New York, 1997.
  • Chen, S.L., Gerner, F.M. and Tien, C.L., “General film condensation on plane and axisymmetric bodies in non-uniform gravity”, Journal of Heat Transfer, 93, 97-100, 1987.
  • Cengel, Y.A., Thermodynamics, An Engineering Approach. Mc Graw Hill, New York, 2018.
  • Bejan, A., “Film condensation on an upward facing plate with free edges”, International Journal of Heat and Mass Transfer, 34, 578-582, 1991.
  • Parkash, O., Kumar, A., and Karwar, B.S., “CFD modeling of slurry pipeline at different Prandtl numbers”, Journal of Thermal Engineering, 7, 951-969, 2021.
  • Joshi, T., Parkash, O. and Krishan, G., “Slurry flow characteristics through a horizontal pipeline at different Prandtl number”, Powder Technology, 413, 118008, 2023.