BİYOMARKERLERİN İYİLEŞTİRİLMİŞ TESPİTİ İÇİN KARBON NANOTÜPLERLE MODİFİYE EDİLMİŞ ELISA SİSTEMİNİN GELİŞTİRİLMESİ

Bu çalışmada, bir peptit biyobelirtecini (İnsan VEGF) analiz etmek için nanomateryalle modifiye edilmiş bir ELISA sistemi geliştirdi ve değerlendirdi. Çok duvarlı karbon nanotüpler (MWCNT), yakalama/tespit antikorları ve HRP enzimi için nanomateryal bazlı modifiye malzemesi olarak kullanıldı. ELISA yönteminin bu üç farklı bağlanma aşamasındaki CNT modifikasyonları test edildi ve karşılaştırıldı. Bu çalışmaların hassasiyet, doğrusallık ve tekrarlanabilirliklerine bağlı olarak en verimli modifikasyon adımı belirlendi. CNT'lerin kullanıldığı ELISA metodunda, özellikle 0,5 pg/ml tespit limit değeri ile daha yüksek hassasiyetler ve dolayısıyla daha güvenilir sonuçlar elde edildiği ve geleneksel ELISA yönteminede performansı artırmak için başarılı bir şekilde kullanılabileceğini kanıtlandı. Ayrıca ticari serum örneklerinin analizinde farklı modifikasyon adımlarının performansları ve tüm bu bağlanma adımlarının stabilitesi değerlendirildi ve geleneksel ELISA yöntemi ile karşılaştırıldı.

CARBON NANOTUBES MODIFIED ELISA SYSTEM DEVELOPMENT FOR IMPROVED DETECTION OF BIOMARKERS

This study developed and evaluated a nanomaterial-modified ELISA system to analyze a peptide biomarker (Human VEGF). Multiwalled carbon nanotubes (MWCNTs) were used as nanomaterial-based modifiers for the capture/detection antibodies and HRP enzyme. CNTs modifications of the ELISA method at these three different binding steps were tested and compared. The most efficient modification step was concluded depending on these works’ sensitivities, linearities, and repeatabilities. We proved that CNTs could be used successfully to enhance the performances compared to the traditional ELISA method by achieving higher sensitivities and, therefore, more confident results, especially with a 0.5 pg/ml of limit of detection value. In addition, the performances of different modification steps in the commercial serum sample and the stability of all these binding steps were evaluated, and compared with the traditional ELISA method.

___

  • Iha, K., Inada, M., Kawada, N., Nakaishi, K., Watabe, S., Tan, Y. H., ... & Ito, E. Ultrasensitive ELISA developed for diagnosis. Diagnostics, 9(3), 78, 2019.
  • S. Hosseini, P. Vázquez-Villegas, M. Rito-Palomares, and S. O. Martinez-Chapa, Enzyme-linked immunosorbent assay (ELISA): from A to Z. Springer, 2018.
  • E. Ito, K. Iha, T. Yoshimura, K. Nakaishi, and S. Watabe, “Early diagnosis with ultrasensitive ELISA,” Advances in Clinical Chemistry, vol. 101, pp. 121–133, 2021.
  • L. Wu, G. Li, X. Xu, L. Zhu, R. Huang, and X. Chen, “Application of nano-ELISA in food analysis: Recent advances and challenges,” TrAC - Trends in Analytical Chemistry, vol. 113, pp. 140–156, 2019, doi: 10.1016/j.trac.2019.02.002.
  • S. K. Arya and P. Estrela, “Recent advances in enhancement strategies for electrochemical ELISA-based immunoassays for cancer biomarker detection,” Sensors (Switzerland), vol. 18, no. 7, 2018, doi: 10.3390/s18072010.
  • W. Chunglok, D. K. Wuragil, S. Oaew, M. Somasundrum, and W. Surareungchai, “Immunoassay based on carbon nanotubes-enhanced ELISA for Salmonella enterica serovar Typhimurium,” Biosensors and Bioelectronics, vol. 26, no. 8, pp. 3584–3589, 2011, doi: 10.1016/j.bios.2011.02.005.
  • X. Zhang et al., “A Double-Antibody Sandwich ELISA for Sensitive and Specific Detection of Swine Fibrinogen-Like Protein 1,” Frontiers in Immunology, vol. 12, p. 1290, 2021.
  • K. Shah and P. Maghsoudlou, “Enzyme-linked immunosorbent assay (ELISA): the basics,” British journal of hospital medicine, vol. 77, no. 7, pp. C98–C101, 2016.
  • T. Lakshmipriya, S. C. B. Gopinath, U. Hashim, and T. H. Tang, “Signal enhancement in ELISA: Biotin-streptavidin technology against gold nanoparticles,” Journal of Taibah University Medical Sciences, vol. 11, no. 5, pp. 432–438, 2016, doi: 10.1016/j.jtumed.2016.05.010.
  • Tsurusawa, N., Chang, J., Namba, M., Makioka, D., Yamura, S., Iha, K., ... & Ito, E. Modified ELISA for ultrasensitive diagnosis. Journal of Clinical Medicine, 10(21), 5197, 2021.
  • H. Li, Y. Li, and Y. Xia, “Advance of modified ELISA and their application,” in E3S Web of Conferences, 2021, vol. 290.
  • J. Kai et al., “A novel microfluidic microplate as the next generation assay platform for enzyme linked immunoassays (ELISA),” Lab on a Chip, vol. 12, no. 21, pp. 4257–4262, 2012.
  • J. Sun, X. Ning, L. Cui, M. Ling, X. Xu, and S. He, “Assembly of ‘carrier free’ enzymatic nano-reporters for improved ELISA,” Analyst, vol. 145, no. 20, pp. 6541–6548, 2020.
  • N. Anzar, R. Hasan, M. Tyagi, N. Yadav, and J. Narang, “Carbon nanotube - A review on Synthesis, Properties and plethora of applications in the field of biomedical science,” Sensors International, vol. 1, no. February, p. 100003, 2020, doi: 10.1016/j.sintl.2020.100003.
  • Liu, W., Yang, H., Ding, Y., Ge, S., Yu, J., Yan, M., & Song, X. based colorimetric immunosensor for visual detection of carcinoembryonic antigen based on the high peroxidase-like catalytic performance of ZnFe 2 O 4–multiwalled carbon nanotubes. Analyst, 139(1), 251-258, 2014.
  • Wang, W., Li, J., Dong, C., Li, Y., Kou, Q., Yan, J., & Zhang, L. Ultrasensitive ELISA for the detection of hCG based on assembled gold nanoparticles induced by functional polyamidoamine dendrimers. Analytica Chimica Acta, 1042, 116-124, 2018.
  • Li, C., Yang, Y., Wu, D., Li, T., Yin, Y., & Li, G. Improvement of enzyme-linked immunosorbent assay for the multicolor detection of biomarkers. Chemical Science, 7(5), 3011-3016, 2016.