MUĞLA BÖLGESİ İÇİN SPEKTRAL GÜNEŞ IŞINIMINDAKİ MEVSİMSEL DEĞİŞİM

Güneş ışınımı, yeryüzüne elektromanyetik dalgalar şeklinde gelir. Güneşten gelen enerji miktarının hesaplanması, fotovoltaik sistemlerin (PV) verimliliğinin belirlenmesi açısından çok önemlidir. Fotovoltaik sistemler (PV) güneş enerjisini elektrik enerjisine dönüştürür. Bu dönüşümde, gelen güneş ışığı miktarı matematiksel modellerle ile hesaplanabilir. Son yıllarda büyük bir ilgi gören ve 0.2-4.0 µm dalga boyunda aralığında gelen spektral ışınım değeri hava kütlesi parametresine bağlı olarak hesaplanır. Bu çalışmada SPCTRL 2 programı kullanılarak matematiksel modelleme tartışılacaktır. Model, atmosferdeki güneş ışığının miktarını belirlemede birçok değişkene sahiptir. Bu model ile herhangi bir yüzeye düşen güneş enerjisi miktarı hesaplanır ve grafiksel olarak modellenir. Çalışmamızda, Muğla ili için yatay ve eğimli yüzeylerinden gelen doğrudan, dolaylı ve toplam (küresel) güneş enerjisi miktarları dalga boyuna bağlı olarak hesaplanmıştır. Muğla ili için kış, ilkbahar, yaz ve sonbahar mevsimlerinde yatay ve 30° eğimli yüzeyler ayrı ayrı hesaplanmaktadır. Burada, yüzeydeki radyasyon miktarlarının eğim açısı ve mevsimsel değişimleri incelenmiştir. Sonuç olarak, Muğla ili için güneş ışığı miktarı matematiksel modelleme ile belirlenmiş ve uygun fotovoltaik sistemin kurulması için genel şartlar belirlenmiştir.

SEASONAL VARIATION of the SPECTRAL IRRADIANCE for the PROVINCE of MUĞLA

Calculation of the amount of energy from the sun as the energy source of the world is very important in terms of determining the efficiency of photovoltaic (PV) systems. At air mass zero solar spectral irradiance values have received a great deal of attention in recent years and are given in the wavelength range 0.2-4.0 µm. The amount of incoming sunlight can be calculated with different mathematical models. In this study, a mathematical modelling using SPCTRL 2 program will be discussed. The model has many variables in determining the quantity of sunlight coming in the atmosphere. With this model, the amount of solar energy falling on any on spot on the Earth’s surface can be calculated and graphically modelled. In this study, direct, indirect and total (global) solar energy amounts coming from horizontal and sloping surfaces for Mugla were calculated depending on the wavelength. Horizontal and 30° inclined surfaces were calculated separately for winter, spring, summer and autumn seasons for Muğla Province. As a result, the amount of solar radiance for Muğla province was determined by mathematical modelling and the general conditions for the establishment of suitable photovoltaic system were determined.

___

  • Eke R, Betts TR, Gottschalg R, “Spectral irradiance effects on the outdoor performance of photovoltaic modules”. Renewable and Sustainable Energy Reviews, March 2017; 69: 429-434.
  • Duffie JA, Beckman WA, “Solar Engineering of Thermal Processes, New Jersey, John Wiley Sons, 2006, p-75.
  • Iqbal, M., “An Introduction to Solar Radiation”, New York: Academic Press, 1983, pp, 101.
  • Gueymard CA, “Parameterised transmittance model for direct beam and circumsolar spectral irradiance”, Solar Energy, 2001;71 (5): 325-341.
  • Gottschalg R, Betts TR, Infield DG, Kearney MJ. “The effect of spectral variations on the performance parameters of single and double junction amorphous silicon solar cells.” Sol Energy, Mater Sol Cells, 2005;85:415–28.
  • Bird, R. E., and R. L. Hulstrom, "Precipitable Water Measurements with Sun Photometers" J. Applied Met., Vol. 21, 1982, pp. 1196-1201.
  • Van Heuklon, T. K., "Estimating Atmospheric Ozone for Solar Radiation Models," Solar Energy, Vol. 22, 1979, pp. 63-68.
  • Bird, R. E., "A Simple Spectral Model for Direct Normal and Diffuse Horizontal Irradiance," Solar Energy, Vol. 32, 1984, pp. 461-471.
  • ]nternational Electro-Technical Commission. Standard IEC 60904-3: Photovoltaic Devices. Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices With Reference Spectral Irradiance Data (Ed. 2; 2008.)
  • Bird R., Riordan C., “Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth's Surface for Cloudless Atmospheres”, Solar Energy Research Institute A Division of Midwest Research Institute 1617 Cole Boulevard Golden, Colorado 80401.
  • Leckner, B., "The Spectral Distribution of Solar Radiation at the Earth's Surface--Elements of a Model," Solar Energy, Vol. 20, 1978, pp. 143-150.
  • Brine, D. T., and M. Iqbal, "Solar Spectral Diffuse Irradiance Under Cloudless Skies," Solar Energy, Vol. 30, 1983, pp. 447-453.
  • Justus, C. G., and M. V. Paris, "A Model for Solar Spectral Irradiance at the Bottom and Top of a Cloudless Atmosphere," submitted to J. of Climate and Applied Meteorology, 1984.
  • Angstrom, A., "Technique of Determining the Turbidity of the Atmosphere," Tellus, Vol. 13, 1961, pp. 214-231.
  • King, M. 0., and B. M. Herman, "Determination of the Ground Albedo and the Index of Absorption of Atmospheric. Particulates by Remote Sensing. Part I: Theory," J. of the Atmos., Vol. 36, 1979, pp. 163-173.
  • Bird, R E., "Terrestrial Solar Spec. tra 1 Modeling, " Solar Cells, Vol. 7; 1983, p. 107.
  • Dave, JV., International Business Machines Corporation, Palo Alto, CA, 1979. Copies of the data sets were put on magnetic tape. "Extensive Datasets of Diffuse Radiation in Realistic Atmospheric Models with Aerosols and Common Absorbing Gases," Solar Energy, Vol. 21, 1978, p. 361.
  • Temps, R. C., and K. L. Coulson, "Solar Radiation Incident Upon Slopes of Different Orientations," Solar Energy, Vol. 19, 1977, pp. 179-184.
  • Klucher, T. M., "Evaluation of Models to Predict Insolation on Tilted Surfaces," Solar Energy, Vol. 23, 1979, pp, 111-114.
  • Bird, R. E., R. L. Hulstrom, A. W. Kliman, and H. G. Eldering, "Solar Spectral Measurements in the Terrestrial Environment," Applied Optics, Vol. 21, 1982, pp. 1430-1436.