Orthophoto production and accuracy analysis with UAV photogrammetry

Orthophoto production and accuracy analysis with UAV photogrammetry

Undoubtedly, Unmanned Aerial Vehicles (UAVs) are one of today’s most functional technology products. In recent years, UAVs integrated with different sensors and transformed into harmony with advanced technology are developing rapidly and used in various applications to obtain spatial data. With UAV photogrammetry, images of target areas can be obtained quickly, at low cost, with high accuracy, and up to date. In addition to the advantages and success of existing methods for orthophoto production in large areas with classical photogrammetry, it is observed that the accuracy of these methods decreases in detecting changes in geometric properties, especially in small-scale areas. For this reason, obtaining geometric accuracy with the desired precision, which is of great importance in orthophoto production with UAV photogrammetry, has made it the basis for preference over classical methods. In this study, autonomous flights were carried out with DJI Mavic-2 Pro UAV in the selected pilot region, and orthophoto, Digital Elevation Model (DEM), and Digital Terrain Model (DTM) were produced as a result of processing the images obtained. To determine the geometric accuracy of the orthophoto, its coordinates were measured by the CORS-GPS method, and ten ground control points (GCP) were used. As a result of the accuracy analysis of the produced orthophoto, the spatial accuracy in the easting (ΔE) direction is ±6.9 cm, the spatial accuracy in the northing (ΔN) direction is ±7.8 cm, and the spatial accuracy in the height (ΔH) direction is ±10.3 cm.

___

  • Yılmaz, H. M., & Yakar, M. (2008). Computing of volume of excavation areas by digital close range photogrammetry.
  • Yakar, M., Yılmaz, H. M., & Mutluoğlu, H. M. (2009). Hacim Hesaplamalarında Laser Tarama ve Yersel Fotogrametrinin Kullanılması, TMMOB Harita ve Kadastro Mühendisleri Odası 12. Türkiye Harita Bilimsel ve Teknik Kurultayı, Ankara.
  • Prisacariu, V. (2017). The history and the evolution of UAVs from the beginning till the 70s. Journal of Defense Resources Management (JoDRM), 8(1), 181-189.
  • Eisenbeiss, H. (2008, February). UAV photogrammetry in plant sciences and geology. In 6th ARIDA Workshop on" Innovations in 3D Measurement, Modeling and Visualization, Povo (Trento), Italy.
  • Selek, E. İHA ile üretilmiş ortofoto, sayısal arazi ve yüzey modeli performanslarının incelenmesi: Bursa ili örneği (Master's thesis, Fen Bilimleri Enstitüsü).
  • Şener, E. (2019). İnsansız hava araçları kullanılarak Süleyman Demirel Üniversitesi yerleşkesinin yüksek çözünürlüklü ortofoto haritasının hazırlanması. Mühendislik Bilimleri ve Tasarım Dergisi, 7(2), 393-402.
  • Yılmaz, H. M., Mutluoğlu, Ö., Ulvi, A., Yaman, A., & Bilgilioğlu, S. S. (2018). İnsansız hava aracı ile ortofoto üretimi ve Aksaray Üniversitesi kampüsü örneği. Geomatik, 3(2), 129-136.
  • Alptekin, A., & Yakar, M. (2020). Determination of pond volume with using an unmanned aerial vehicle. Mersin Photogrammetry Journal, 2(2), 59-63.
  • Gültekin, Y., Özemir, I., Uzar, M., & Şimşek, M. (2016). İnsansız hava aracları ile ortofoto ve sym üretimi. Uzaktan algılama CBS Sempozyumu (UZAL-CBS 2016), 310-318.
  • Bakirman, T., Bayram, B., Akpinar, B., Karabulut, M. F., Bayrak, O. C., Yigitoglu, A., & Seker, D. Z. (2020). Implementation of ultra-light UAV systems for cultural heritage documentation. Journal of Cultural Heritage, 44, 174-184.
  • Eisenbeiß, H. (2009). UAV photogrammetry.
  • Wolf, P. R., Dewitt, B. A., & Wilkinson, B. E. (2014). Elements of Photogrammetry with Applications in GIS. McGraw-Hill Education.
  • Özbalmumcu, M. (2007). Fotogrametrik Yöntemle Ortofoto Harita Üretiminin Temel Esasları, Ortofotonun Yararları ve Kullanım Alanları. TUFUAB IX. Teknik Sempozyumu, İstanbul.
  • Yılmaz, V., Akar, A., Akar, Ö., Güngör, O., Karslı, F., & Gökalp, E. (2013). İnsansiz hava araci ile üretilen ortofoto haritalarda doğruluk analizi. Türkiye Ulusal Fotogrametri ve Uzaktan Algılama Birliği VII. Teknik Sempozyumu (TUFUAB’2013), 23-25 Mayıs 2013.
  • Simard, P. G. (1997). Accuracy of digital orthophotos (Doctoral dissertation, University of New Brunswick).
  • Arslan, O., & YAĞCIOĞLU, K. Fotogrametrik nirengiyle üretilen ortofoto haritalar ile koordinat altyapısındaki değişimlerin analizi: İzmit Körfezi örneği. Türkiye Fotogrametri Dergisi, 3(2), 37-45.
  • Arslan, O., & Yılmaz, P. (2020). Evaluating the Geometric Accuracy of Large Scale Digital Orthophotos Produced from Aerial Photography. International Journal of Environment and Geoinformatics, 7(3), 265-271.
  • Dalamagkidis, K., Valavanis, K. P., & Piegl, L. A. (2008). Current status and future perspectives for unmanned aircraft system operations in the US. Journal of Intelligent and Robotic Systems, 52(2), 313-329.
  • Mesas-Carrascosa, F. J., Rumbao, I. C., Berrocal, J. A. B., & Porras, A. G. F. (2014). Positional quality assessment of orthophotos obtained from sensors onboard multi-rotor UAV platforms. Sensors, 14(12), 22394-22407.
  • Sai, S. S., Tjahjadi, M. E., & Rokhmana, C. A. (2019). Geometric accuracy assessments of orthophoto production from uav aerial images. KnE Engineering, 333-344.
  • Akar., A., Akar, Ö., & Bayata, H. F. (2021). SenseFly eBeeX İHA ile Üretilen Ortofotonun Konum Doğruluğunun İncelenmesi. Türkiye İnsansız Hava Araçları Dergisi, 3(2), 65-68.
  • Smith, D., & Heidemann, H. K. (2015). New standard for new era: Overview of the 2015 ASPRS positional accuracy standards for digital geospatial data. Photogrammetric Engineering & Remote Sensing, 81(3), 173-176.
  • Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections. International journal of computer vision, 80(2), 189-210.
  • Westoby, M. J., Brasington, J., Glasser, N. F., Hambrey, M. J., & Reynolds, J. M. (2012). ‘Structure-from-Motion’photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179, 300-314.
  • Eroğlu, M., & Narin, Ö. G. (2021). İnsansız hava aracı ile üretilen Sayısal Yükseklik Modeli (SYM) ile Google Earth ve HGM Küre verilerinin karşılaştırılması. Politeknik Dergisi, 24(2), 545-551.
  • Yakar, M., Orhan, O., Ulvi, A., Yiğit, A. Y., & Yüzer, M. M. (2015). Sahip Ata Külliyesi Rölöve Örneği. TMMOB Harita ve Kadastro Mühendisleri Odası, 10.
  • Morgan, J. A., & Brogan, D. J. (2016). How to VisualSFM. Dep. Civ. Environ. Eng. Color. State Univ. Fort Collins, Color.
  • Cook, K. L. (2017). An evaluation of the effectiveness of low-cost UAVs and structure from motion for geomorphic change detection. Geomorphology, 278, 195-208.
  • Maes, W. H., & Steppe, K. (2019). Perspectives for remote sensing with unmanned aerial vehicles in precision agriculture. Trends in plant science, 24(2), 152-164.
  • Peña-Villasenín, S., Gil-Docampo, M., & Ortiz-Sanz, J. (2019). Professional SfM and TLS vs a simple SfM photogrammetry for 3D modelling of rock art and radiance scaling shading in engraving detection. Journal of Cultural Heritage, 37, 238-246.
  • Alptekin, A., Çelik, M. Ö., Doğan, Y., & Yakar, M. (2019). Mapping of a rockfall site with an unmanned aerial vehicle. Mersin Photogrammetry Journal, 1(1), 12-16.
  • Ulvi, A., Yakar, M., Yiğit, A., & Kaya, Y. (2019). The use of photogrammetric techniques in documenting cultural heritage: The Example of Aksaray Selime Sultan Tomb. Universal Journal Of Engineering Science, 7(3), 64-73.
  • Kılınçoğlu, D. B. (2016). Farklı insansız hava araçları ile elde edilen görüntülerin otomatik fotogrametrik yöntemlerle değerlendirilmesi ve doğruluk analizi (Doctoral dissertation, Fen Bilimleri Enstitüsü).