3D modeling of car parts by photogrammetric methods: Example of brake discs

3D modeling of car parts by photogrammetric methods: Example of brake discs

Re-measurement of existing, manufactured parts and re-creation of 3D models of these parts brought about the concept of reverse engineering. Reverse engineering has become a frequently applied and utilized concept in processes such as repairing damaged parts, improving used parts, and making new designs based on old parts. One of the main reverse engineering methods widely used by many engineering branches is photogrammetry. Photogrammetry, which includes a wide range of applications from professional cameras to mobile phones, is divided into branches such as terrestrial photogrammetry, aerial photogrammetry and underwater photogrammetry. The basis of all these categories is the concept of making measurements of a part, structure or region and modeling them in 3D, even if they involve different equipment and instruments. In this study, the 3D model of a rear brake disc of a personal passenger car was obtained using mobile photogrammetric methods. In the results section, the applicability of the method was examined in terms of cost, time and accuracy, together with the results of the accuracy analysis. It has been shown that the mobile photogrammetry method can provide easy applicability, low cost and high accuracy of 0.88 mm.

___

  • Yakar, M., Murat Yılmaz, H., Yıldız, F., Zeybek, M., Şentürk, H., & Çelik, H. (2009). Silifke-Mersin Bölgesinde Roma Dönemi Eserlerinin 3 Boyutlu Modelleme Çalışması ve Animasyonu. Jeodezi ve Jeoinformasyon Dergisi, (101).
  • Şanlıoğlu, İ., Zeybeka, M., & Karauğuzb, G. (2013). Photogrammetrıc survey and 3D modelıng of Ivrız rock relief in LATE Hittite Era. Mediterranean Archaeology & Archaeometry, 13(2).
  • Yakar, M., & Doğan, Y. (2018). GIS and three-dimensional modeling for cultural heritages. International Journal of Engineering and Geosciences (IJEG), 3(2), 50-55.
  • Unal, M., Yakar, M., & Yildiz, F. (2004, July). Discontinuity surface roughness measurement techniques and the evaluation of digital photogrammetric method. In Proceedings of the 20th international congress for photogrammetry and remote sensing, ISPRS (Vol. 1103, p. 1108).
  • Yakar, M., Yılmaz, H. M., Güleç, S. A., & Korumaz, M. (2009). Advantage of digital close range photogrammetry in drawing of muqarnas in architecture. Information Technology Journal, 8(2), 202-207.
  • Alyilmaz, C., Yakar, M., & Yilmaz, H. M. (2010). Drawing of petroglyphs in Mongolia by close range photogrammetry. Scientific Research and Essays, 5(11), 1216-1222.
  • Yılmaz, H. M., Karabörk, H., & Yakar, M. (2000). Yersel fotogrametrinin kullanım alanları. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 4(1), 1.
  • Şahin, İ., Şahin, T., & Gökçe, H. (2017). Hasarlı Dişlilerin Tersine Mühendislik Yaklaşımıyla Yeniden Oluşturulması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 5(2), 485-495.
  • Che, J., Zhang, Y., Wang, H., Liu, Y., Du, M., Ma, S., ... & Suo, C. (2021). A novel method for analyzing working performance of milling tools based on reverse engineering. Journal of Petroleum Science and Engineering, 197, 107987.
  • Zhang, L., Yuan, J., He, S., Huang, S., Xiong, S., Shi, T., & Xuan, J. (2021). Contact heat transfer analysis between mechanical surfaces based on reverse engineering and FEM. Tribology International, 161, 107097.
  • Singh, S. K., Raval, S., & Banerjee, B. (2021). A robust approach to identify roof bolts in 3D point cloud data captured from a mobile laser scanner. International Journal of Mining Science and Technology, 31(2), 303-312.
  • Liu, X., Wei, Y., Wu, H., & Zhang, T. (2020). Factor analysis of deformation in resistance spot welding of complex steel sheets based on reverse engineering technology and direct finite element analysis. Journal of Manufacturing Processes, 57, 72-90.
  • LaRocco, J., & Paeng, D. G. (2020). A functional analysis of two 3D-scanned antique pistols from New Zealand. Virtual Archaeology Review, 11(22), 85-94.
  • Kanun, E. (2021). Using photogrammetric modeling in reverse engineering applications: Damaged turbocharger example. Mersin Photogrammetry Journal, 3(1), 21-28.
  • Chitsaz, N., Siddiqui, K., Marian, R., & Chahl, J. (2021). An experimental study of the aerodynamics of micro corrugated wings at low Reynolds number. Experimental Thermal and Fluid Science, 121, 110286.
  • Liang, B., Liu, W., Liu, K., Zhou, M., Zhang, Y., & Jia, Z. (2021). A Portable Noncontact Profile Scanning System for Aircraft Assembly. Engineering.
  • Aldao, E., González-Jorge, H., & Pérez, J. A. (2021). Metrological comparison of LiDAR and photogrammetric systems for deformation monitoring of aerospace parts. Measurement, 174, 109037.
  • Koelman, H. J. (2010). Application of a photogrammetry-based system to measure and re-engineer ship hulls and ship parts: An industrial practices-based report. Computer-Aided Design, 42(8), 731-743.
  • Deja, M., Dobrzyński, M., & Rymkiewicz, M. (2019). Application of reverse engineering technology in part design for shipbuilding industry. Polish Maritime Research, 26(2), 126–133. https://doi.org/10.2478/pomr-2019-0032
  • Kanun, E., & Yakar, M. (2021). Mobıle phone-based photogrammetry for 3D modelıng of shıp hulls. Mersin University Journal of Maritime Faculty, 3(1), 9-16.
  • Ackermann, S., Menna, F., Scamardella, A., & Troisi, S. (2008, July). Digital photogrammetry for high precision 3D measurements in shipbuilding field. In 6th CIRP International Conference on ICME-Intelligent Computation in Manufacturing Engineering.
  • Tassetti, N., Martelli, M., & Buglioni, G. (2015, June). Reverse engineering techniques for trawler hull 3D modelling and energy efficiency evaluation. In Proc of NAV 2015 18th International Conference on Ships and Shipping Research (pp. 24-26).
  • Burdziakowski, P., & Tysiac, P. (2019). Combined close range photogrammetry and terrestrial laser scanning for ship hull modelling. Geosciences, 9(5), 242. https://doi.org/10.3390/geosciences9050242
  • Abbas, M. A., Lichti, D. D., Chong, A. K., Setan, H., Majid, Z., Lau, C. L., ... & Ariff, M. F. M. (2017). Improvements to the accuracy of prototype ship models measurement method using terrestrial laser scanner. Measurement, 100, 301-310. https://doi.org/10.1016/j.measurement.2016.12.053
  • Menna, F., & Nocerino, E. (2014). Hybrid survey method for 3D digital recording and documentation of maritime heritage. Applied Geomatics, 6(2), 81-93. https://doi.org/10.1007/s12518-011-0074-9
  • Martelli, M., Vernengo, G., Bruzzone, D., & Notti, E. (2016, June). Overall efficiency assessment of a trawler propulsion system based on hydrodynamic performance computations. In The 26th International Ocean and Polar Engineering Conference. OnePetro.
  • Çelik, M. Ö., Yakar, İ., Hamal, S., Oğuz, G. M., & Kanun, E. (2020). Sfm tekniği ile oluşturulan 3B modellerin kültürel mirasın belgelenmesi çalışmalarında kullanılması: Gözne Kalesi örneği. Türkiye İnsansız Hava Araçları Dergisi, 2(1), 22-27.
  • Yakar, M., & Yılmaz, H. M. (2008). Kültürel miraslardan tarihi Horozluhan’in fotogrametrik rölöve çalişmasi ve 3 boyutlu modellenmesi. Selçuk Üniversitesi Mühendislik, Bilim ve Teknoloji Dergisi, 23(2), 25-33.
  • Alptekin, A., Çelik, M. Ö., & Yakar, M. (2019). Anıtmezarın yersel lazer tarayıcı kullanarak 3B modellenmesi. Türkiye Lidar Dergisi, 1(1), 1-4.
  • Jing, X., Zhang, C., Sun, Z., Zhao, G., & Wang, Y. (2015, April). The technologies of close-range photogrammetry and application in manufacture. In 3rd International Conference on Mechatronics, Robotics and Automation (pp. 988-994). Atlantis Press.
  • Huang, G. P. (2005). Study on the key technologies of digital close range industrial photogrammetry and applications. Tianjin: Tianjin University.
  • Ingeniería y la mecánica (2019). Disc brakes: construction, working principle, types, and rotor materials.
  • Şahin, İ., Şahin, T., & Gökçe, H. (2017). Hasarlı Dişlilerin Tersine Mühendislik Yaklaşımıyla Yeniden Oluşturulması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 5(2), 485-495.
  • Saiga, K., Ullah, A. S., & Kubo, A. (2021). A Sustainable Reverse Engineering Process. Procedia CIRP, 98, 517-522. https://doi.org/10.1016/j.procir.2021.01.144.
  • Li, L., Li, C., Tang, Y., & Du, Y. (2017). An integrated approach of reverse engineering aided remanufacturing process for worn components. Robotics and Computer-Integrated Manufacturing, 48, 39-50.
  • Ingle, K. A. (1994). Reverse engineering. McGraw-Hill Professional Publishing.