Simüle edilmiş gastrointestinal koşullar altında süt yağının Listeria monocytogenes canlılığına ve canlı ancak sayılamayan durumu üzerine etkisi

Süt, yüksek besin değeriyle birlikte, yaşamı tehdit edebilen belirli mikroorganizmaların büyümesi için de mükemmel bir ortamdır. Süt yağının, sütte bulunan L. monocytogenes'in canlılığına etki ettiği görülmüştür. Bu çalışmada, simüle edilmiş gastrointestinal koşullar altında sütte L. monocytogenes'in hayatta kalmasında süt yağının etkisinin değerlendirilmesi amaçlanmıştır. Süte aşılanan L. monocytogenes'in canlılığını değerlendirmek için insan fizyolojik koşullarını taklit eden dört farklı ortam (saliva, mide, ince bağırsak ve kalın bağırsak) oluşturulmuştur. Sütün genellikle kahvaltı öğünü olarak tüketildiği göz önüne alındığında, değerlendirme gastrointestinal sistemin aç olduğu durumda yapılmıştır. 48 saat soğukta saklama sonrası yapılan değerlendirmede saliva ortamında 5 log10 CFU/ mL'ye kadar düşüş tespit edilmiştir. Canlı ancak sayılamayan değerlendirmede saliva ortamında L. monocytogenes sayısı yağsız ve yarım yağlı süt için 8 log10 CFU/ mL, tam yağlı süt için 9 log10 CFU/ mL olarak belirlenmiştir. Simüle edilmiş gastrointestinal ortamların alt kısımlarında incelenen farklı yağ içeriğine sahip olan süt gruplarında ise L. monocytogenes tespit edilmemiştir.

Influence of milk fat on Listeria monocytogenes viability under simulated gastrointestinal conditions and on the viable but not countable state

Along with the high nutritional value, milk represents an excellent medium for the growth of certain microorganisms, some of which can be life threatening. Milk fat has been found to affect the survival of L. monocytogenes in milk. The present study aimed to evaluate the effect of milk fat in the survival of L. monocytogenes in milk under simulated gastrointestinal conditions. Four compartments (saliva, gastric, small intestine and large intestine) mimicking the human physiological conditions were established to evaluate the viability of L. monocytogenes inoculated in milk. Given that milk is generally consumed as a breakfast meal, the evaluation was done in the fasted state of the gastrointestinal system. A decrease to 5 log10 CFU/ mL was determined in saliva compartment, in the evaluation after 48 h of cold storage. In the viable but not countable evaluation, L. monocytogenes counts were determined to be 8 log10 CFU/ mL for skim milk and semi-skim milk, and 9 log10 CFU/ mL for whole fat milk in the saliva compartment. Regardless the fat content, L. monocytogenes was not detected in any of the milk groups in the lower parts of the simulated gastrointestinal compartments.

___

  • Afari, G.K., Liu, H., Hung, Y.C., 2019. The effect of produce washing using electrolyzed water on the induction of the viable but non-culturable (VBNC) state in Listeria monocytogenes and Escherichia coli O157: H7. LWT 110, 275-282.
  • Akritidou, T., Akkermans, S., Gaspari, S., Azraini, N. D., Smet, C., Van de Wiele, T., Van Impe, J. F., 2022. Effect of gastric pH and bile acids on the survival of Listeria monocytogenes and Salmonella Typhimurium during simulated gastrointestinal digestion. Innovative Food Science & Emerging Technologies 103161.
  • Arqués, J. L., Rodríguez, E., Langa, S., Landete, J. M., Medina, M., 2015. Antimicrobial activity of lactic acid bacteria in dairy products and gut: effect on pathogens. BioMed research International 584183, 1-9.
  • Arvaniti, M., Tsakanikas, P., Papadopoulou, V., Giannakopoulou, A., Skandamis, P., 2021. Listeria monocytogenes Sublethal Injury and Viable-but-Nonculturable State Induced by Acidic Conditions and Disinfectants. Microbiology spectrum 9, e01377-21.
  • Bando, E., Oliveira, R.C., Ferreira, G.M.Z., Machinski, M., Jr., 2009. Occurrence of antimicrobial residues in pasteurized milk commercialized in the state of Paraná, Brazil. Journal of Food Protection 72, 911–914.
  • Bianchi, D. M., Barbaro, A., Gallina, S., Vitale, N., Chiavacci, L., Caramelli, M., Decastelli, L., 2013. Monitoring of foodborne pathogenic bacteria in vending machine raw milk in Piedmont, Italy. Food Control 32, 435-439.
  • Castro, H., Ruusunen, M., Lindström, M., 2017. Occurrence and growth of Listeria monocytogenes in packaged raw milk. International Journal of Food Microbiology 261, 1–10.
  • Chen, H., Zhong, Q., 2017. Lactobionic acid enhances the synergistic effect of nisin and thymol against Listeria monocytogenes Scott A in tryptic soy broth and milk. International Journal of Food Microbiology 260, 36-41.
  • Claeys, W.L., Cardoen, S., Daube, G., De Block, J., Dewettinck, K., Dierick, K., de Zutter, L., Huyghebaert, A., Imberechts, H., Thiange, P., 2013. Raw or heated cow milk consumption: Review of risks and benefits. Food Control 31, 251–262.
  • Dalzini, E., Bernini, V., Bertasi, B., Daminelli, P., Losio, M. N., Varisco, G., 2016. Survey of prevalence and seasonal variability of Listeria monocytogenes in raw cow milk from Northern Italy. Food Control 60, 466-470.
  • de Medeiros Barbosa, I., da Cruz Almeida, É. T., Gomes, A. C. A., de Souza, E. L., 2020. Evidence on the induction of viable but non-culturable state in Listeria monocytogenes by Origanum vulgare L. and Rosmarinus officinalis L. essential oils in a meat-based broth. Innovative Food Science & Emerging Technologies 62, 102351.
  • Dong, Q., Zhang, W., Guo, L., Niu, H., Liu, Q., Wang, X., 2020. Influence of Lactobacillus plantarum individually and in combination with low O2-MAP on the pathogenic potential of Listeria monocytogenes in cabbage. Food Control 107, 106765.
  • Eicher, C., Ruiz Subira, A., Corti, S., Meusburger, A., Stephan, R., Guldimann, C., 2020. Growth potential of Listeria monocytogenes in three different salmon products. Foods 9, 1048.
  • Erol, Z., Taşçı, F., 2021. Overview of Listeria monocytogenes as a foodborne pathogen: Traditional review. Türkiye Klinikleri Sağlık Bilimleri Dergisi 12, 37-48.
  • Evert-Arriagada, K., Trujillo, A. J., Amador-Espejo, G. G., Hernández-Herrero, M. M., 2018. High pressure processing effect on different Listeria spp. in a commercial starter-free fresh cheese. Food microbiology 76, 481-486.
  • Geigl, E.M. 2008. Palaeogenetics of cattle domestication: Methodological challenges for the study of fossil bones preserved in the domestication centre in Southwest Asia. C. R. Palevol 7, 99–112.
  • Headrick, M.L., Korangy, S., Bean, N.H., Angulo, F.J., Altekruse, S.F., Potter, M.E., Klontz, K.C., 1998. The epidemiology of raw milk-associated foodborne disease outbreaks reported in the United States, 1973 through 1992. American Journal of Public Health 88, 1219–1221.
  • Highmore, C. J., Warner, J. C., Rothwell, S. D., Wilks, S. A., Keevil, C. W., 2018. Viable-but-nonculturable Listeria monocytogenes and Salmonella enterica serovar Thompson induced by chlorine stress remain infectious. MBio 9, e00540-18.
  • Huth, P. J., DiRienzo, D. B., Miller, G. D., 2006. Major scientific advances with dairy foods in nutrition and health. Journal of dairy science 89, 1207-1221.
  • International Organization for Standardization (ISO) 2017. “EN ISO 11290-1:2017. Microbiology of the food chain- Horizontal method detection and enumeration of Listeria monocytogenes and of Listeria spp.- Part 1: Detection method”.
  • Kumar, S., Ghosh, A., 2019. Assessment of bacterial viability: A comprehensive review on recent advances and challenges. Microbiology 165, 593–610.
  • Latorre, A. A., Van Kessel, J. A. S., Karns, J. S., Zurakowski, M. J., Pradhan, A. K., Zadoks, R. N., Schukken, Y. H., 2009. Molecular ecology of Listeria monocytogenes: evidence for a reservoir in milking equipment on a dairy farm. Applied and Environmental Microbiology 75, 1315-1323.
  • Lee, S. H. I., Cappato, L. P., Guimarães, J. T., Balthazar, C. F., Rocha, R. S., Franco, L. T., de Oliveira, C. A. F., 2019. Listeria monocytogenes in milk: occurrence and recent advances in methods for inactivation. Beverages 5, 14.
  • Liu, Y., Zhu, L., Dong, P., Liang, R., Mao, Y., Yang, X., Luo, X., 2020. Acid tolerance response of Listeria monocytogenes in various external pHs with different concentrations of lactic acid. Foodborne Pathogens and Disease, 17, 253-261.
  • Martin, B., Chamba, J.F., Coulon, J.B., Perreard, E., 1997. Effect of milk chemical composition and clotting characteristics on chemical and sensory properties of Reblochon de Savoie cheese. Journal of Dairy Research 64, 157–162.
  • Mortazavi, N., Aliakbarlu, J., 2019. Antibacterial effects of ultrasound, cinnamon essential oil, and their combination against Listeria monocytogenes and Salmonella Typhimurium in milk. Journal of food science 84, 3700-3706.
  • Noll, M., Trunzer, K., Vondran, A., Vincze, S., Dieckmann, R., Al Dahouk, S., Gold, C., 2020. Benzalkonium chloride induces a VBNC state in Listeria monocytogenes. Microorganisms 8, 184.
  • Overney, A., Jacques-André-Coquin, J., Ng, P., Carpentier, B., Guillier, L., Firmesse, O., 2017. Impact of environmental factors on the culturability and viability of Listeria monocytogenes under conditions encountered in food processing plants. International journal of food microbiology 244, 74-81.
  • Özkale, S., Kahraman, H. A., 2022. Determination of the Effect of Milk Fat on the Inactivation of Listeria monocytogenes by Ohmic Heating. Ankara Üniversitesi Veteriner Fakültesi Dergisi.
  • Perkiomäki, J., Leimi, A., Tuominen, P., 2012. Suomessa tuotetun raakamaidon biologiset vaarat–riskiprofiili. [Biological hazards of raw milk produced in Finland–risk profile]. Eviran tutkimuksia 4, 1–131. 12.
  • Prezzi, L. E., Lee, S. H., Nunes, V. M., Corassin, C. H., Pimentel, T. C., Rocha, R. S., Oliveira, C. A., 2020. Effect of Lactobacillus rhamnosus on growth of Listeria monocytogenes and Staphylococcus aureus in a probiotic Minas Frescal cheese. Food Microbiology 92, 103557.
  • Rugji, J., Dinçoğlu, A. H., 2022. Biocontrol of Listeria monocytogenes by Bacillus coagulans GBI-30, 6086 in a synbiotic white brined cheese: An In Vitro model study. LWT, 113982.
  • Truchado, P., Gil, M. I., Allende, A., 2021. Peroxyacetic acid and chlorine dioxide unlike chlorine induce viable but non-culturable (VBNC) stage of Listeria monocytogenes and Escherichia coli O157: H7 in wash water. Food Microbiology 100, 103866.
  • Verheyen, D., Govaert, M., Seow, T. K., Ruvina, J., Mukherjee, V., Baka, M., Van Impe, J. F., 2020. The complex effect of food matrix fat content on thermal inactivation of Listeria monocytogenes: Case study in emulsion and gelled emulsion model systems. Frontiers in Microbiology 10, 3149.
  • Vieira, A. I., Guerreiro, A., Antunes, M. D., Miguel, M. D. G., Faleiro, M. L., 2019. Edible coatings enriched with essential oils on apples impair the survival of bacterial pathogens through a simulated gastrointestinal system. Foods 8, 57.
  • Wu, V. C. H., Fung, D. Y. C., 2001. Evaluation of thin agar layer method for recovery of heat‐injured foodborne pathogens. Journal of Food Science, 66, 580-583.
  • Zhao, X., Zhong, J., Wei, C., Lin, C.-W., Ding, T., 2017. Current perspectives on viable but non-culturable state in foodborne pathogens. Frontiers in Microbiology 8, 580.