Demir Yüklemenin MCM-41 ve MCM-48 Mezo Gözenekli Yapıların Fizikokimyasal Özellikleri Üzerine Etkisi

Bu çalışmada MCM-41 ve MCM-48 mezogözenekli yapılar sentezlenmiş ve yapılarına değişik Fe/Si oranlarında yaş emdirme ile demir yüklenmiştir. X-ışını kırınım desenleri tek boyutlu düzenli silika matriksi ile MCM-41 ve üç boyutlu silika matriksi ile MCM-48 yapıların oluşumunu göstermiştir.  Düzenli mezo gözenek yapısını sergileyen ilk pik, her iki yapıda 2θ değerinin 2.6o değerinin altında keskin bir şekilde gözlenmiş ve demir emdirme ile pik şiddetinde azalma meydana gelmiştir. Amorf silika duvar varlığı MCM-41 yapı için 10-40o arasında gözlenirken MCM-48 için daha geniş bir aralıkta sergilenmiştir. Demirin yapıya oksit formunda yüklendiği X-ışını kırınım desenleri ile belirlenirken, enerji dağılımlı X-ışınları spektroskopisi (EDS) demir yükleme başarısının % 95 değerlerine ulaştığı göstermektedir. Demir yüklemesi, MCM-41 ve MCM-48 için sırasıyla 1073 ve 1200 m2/g olarak belirlenen yüzey alan değerlerinde % 25’e varan azalmaya neden olmuştur. Taramalı elektron microskobu nispeten homojen parçacık boyutlarının oluşumunu ve emdirme işlemi ile kümeleşmenin meydana geldiğini, MAP görüntüsü ise demir bileşiklerinin silika duvar üzerinde homojen dağıldığının göstermiştir.Anahtar Kelimeler: mezo gözenek, düzenli yapı, yaş emdirme, yapısal özellikler, kimyasal özellik

___

  • • Beck, J.S., Kresge, C. T., Leonowicz, M. E., Roth, W.C., Vartuli, J.C. (1992). Ordered mesoporous molecular sieves synthesis by a liquid-crystal template mechanism. Letters to Nature, 359: 710-712.
  • • Chàvez, J. E., Crotti, C., Zangrando, E., Farnetti, E. (2016). Iron complexes with nitrogen bidentate ligands as green catalysts for alcohol oxidation. Journal of Molecular Catalysis A: Chemical, 421: 189-195.
  • • Ciesla, U., Schüth, F. (1999). Ordered mesoporous materials. Microporous and Mesoporous Materials, 27: 131-149.
  • • Endud, S., Wong, K.L. (2007). Mesoporous silica MCM-48 molecular sieve modified with SnCl2 in alkaline medium for selective oxidation of alcohol. Microporous and Mesoporous Materials, 101: 256-263.
  • • Fu, Y., Zhan, W., Guo, Y., Wang, Y., Liu, X., Guo, Y., Wang, Y., Lu, G. (2015). Effect of surface functionalization of cerium-doped MCM-48 on its catalytic performance for liquid-phase free-solvent oxidation of cyclohexane with molecular oxygen. Microporous and Mesoporous Materials, 214: 101-107.
  • • Gaydhankar, T.R., Taralkar, U.S., Jha, R.K., Joshi, P.N., Kumar, R. (2005). Textural/structural, stability and morphological properties of mesostructured silicas (MCM-41 and MCM-48) prepared using different silica sources, Catalysis Communications, 6: 361-366.
  • • Gies, H., Grabowski, S., Bandyopadhyay, M., Grünert, W., Tkachenko, O.P., Klementiev, K.V., Birkner, A. (2003). Synthesis and characterization of silica MCM-48 as carrier of size-confined nanocrystalline metal oxides particles inside the pore system. Microporous and Mesoporous Materials, 60: 31–42.
  • • Glanville, Y.J., Pearce, J.V., Sokol, P.E., Newalker, B., Komarneni, S. (2003). Study of H2 confined in highly ordered pores of MCM-48. Chemical Physics, 292: 289-293.
  • • Güçbilmez, Y., Doğu, T., Balcı, S. (2005). Vanadium incorporated high surface area MCM-41 catalysts. Catalysis Today, 100: 473–477.
  • • Huang, B., Liu, B.S., Wang, F., Amin, R. (2015). Performance of Zn–Fe–Mn/MCM-48 sorbents for high temperature H2S removal and analysis of regeneration process. Applied Surface Science, 353: 1–10.
  • • Kim, J.M., Kim, S.K., Ryoo, R. (1998). Synthesis of MCM-48 single crystals. Chemical Communications, 259-260.
  • • Köhn, R., Fröba, M. (2001). Nanoparticles of 3d transition metal oxides in mesoporous MCM-48 silica host structures: synthesis and characterization. Catalysis Today, 68: 227-236.
  • • Köhn, R., Paneva, D., Dimitrov, M., Tsoncheva, T., Mitov, I., Minchev, C., Fröba, M. (2003). Studies on the state of iron oxide nanoparticles in MCM-41 and MCM-48 silica materials. Microporous and Mesoporous Materials, 63: 125–137.
  • • Meylen, V., Cool, P., Vansant, E.F. (2009). Verified syntheses of mesoporous materials. Microporous and Mesoporous Materials, 125: 170–223.
  • • Nur, H., Guan, L.C., Endud, S., Hamdan, H. (2004). Quantitative measurement of a mixture of mesophases cubic MCM-48 and hexagonal MCM-41 by 13C CP/MAS NMR. Materials Letters, 58: 1971-1974.
  • • Qian, W., Wang, H., Chen, J., Kong, Y. (2015). Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability. Materials, 8: 1752-1765.
  • • Øye, G., Sjöblom, J., Stöcker, M. (2001). Synthesis, characterization and potential applications of new materials in the mesoporous range. Advances in Colloid and Interface Science, 89-90: 439-466.
  • • Peña, M.L., Dejoz, A., Fornés, V., Rey, F., Vázquez, M.I., Lòpez Nieto, J.M. (2001). V-containing MCM-41 and MCM-48 catalysts for the selective oxidation of propane in gas phase. Applied Catalysis A: General, 209: 155-164.
  • • Romero, A., Alonso, E., Sastre, A., Nieto-Marquez, A. (2016). Conversion of biomass into sorbitol: Cellulose hydrolysis on MCM-48 and D-Glucose hydrogenation on Ru/MCM-48. Microporous and Mesoporous Materials, 224: 1-8.
  • • Schüth, F., Wingen, A., Sauer, J. (2001). Oxide loaded ordered mesoporous oxides for catalytic application. Microporous and Mesoporous Materials, 44–45: 465-476.
  • • Selvam, P., Bhatia, S.K., Sonwane, C.G. (2001). Recent advances in processing and characterization of periodic mesoporous MCM-41 silicate molecular sieves. Industrial & Engineering Chemistry Research, 40: 3237-3261.
  • • Solmaz, A., Balci, S., Dogu, T. (2011). Synthesis and characterization of V, Mo and Nb incorporated micro–mesoporous MCM-41 materials. Materials Chemistry and Physics, 125(1): 148-155.
  • • Taguchi, A., Schüth, F. (2005). Ordered mesoporous materials in catalysis. Microporous and Mesoporous Materials, 77: 1–45.
  • • Wang Y., Yang W., Yang L., Wang X., Zhang Q. (2006). Iron containing heteregeneous catalysts for partial oxidation of methane and epoxidation of propylene, Catal. Today, 117, 156-162.
  • • Wingen, A., Anastasieviec, N., Hollnagel, A., Werner, D., Schüth, F., J. (2000). Fe–MCM-41 as a Catalyst for Sulfur Dioxide Oxidation in Highly Concentrated Gases. Journal of Catalysis, 193: 248-254.
  • • Xiong, Z., Hu, Q., Liu, D., Wu, C., Zhou, F., Wang, Y.Z., Jin, J., Lu, C. (2016). Influence of partial substitution of iron oxide by titanium oxide on the structure and activity of iron–cerium mixed oxide catalyst for selective catalytic reduction of NOx with NH3. Fuel, 165: 432-439.
  • • Zaki, T. (2005). Catalytic dehydration of ethanol using transition metal oxide catalysts, J.Colloid Inter. Sci., 284, 606-613.
  • • Zhang Q., Li Y., An, D., Wang Y. (2009). Catalytic behaviour and kinetic features of FeOx/SBA-15 catalysts for selective oxidation of methane by oxygen, Appl. Catal. A:Gener., 356, 103-111.
  • • Zhao, W., Kong, L., Luo, Y., Li, Q. (2007). Study of the influence factors on the synthesis of Fe-MCM-48 with binary mixed cationic and anionic surfactants. Microporous Mesoporous Materials, 100: 111-117.
  • • Zhao, X. S., Lu, G.Q., Millar, G.J. (1996). Advances in mesoporous molecular sieve MCM-41. Industrial Engineering Chemistry and Resaerch, 35(7): 2075-2090.
  • • Zhou, H., Zhou, M., Liu, Z., Cheng, M., Chen, J. (2016). Modeling NOx emission of coke combustion in iron ore sintering process and its experimental validation, Fuel, 179: 322-331.
  • • Ziolek, M., Nowak, I., Kilos, B., Sobczak, I., Decyk, P., Trejda, M., Volta, J.C. (2004). Template synthesis and characterization of MCM-41 mesoporous molecular sieves containing various transition metal elements-TME (Cu, Fe, Nb, V, Mo), Journal of Physics and Chemistry of Solids, 65: 571-581.