Çimento Esaslı Odun Kompozit Malzemelerin Üretim Prosesi ve Özellikleri Üzerine Bir Çalışma

Çevre ve doğayı korumaya olan ilginin giderek artması sonucu, lignoselüloik esaslı kaynakların kompozit malzemelerin yapısında güçlendirici eleman olarak kullanımına olan ilginin artmasına neden olmuştur.  Zira bu doğal kaynaklar, daha düşük maliyetlidirler ve yeterli direnç özelliklerin sahiptirler. Çimento ile yapıştırılmış odun esaslı kompozit malzemelerde tipik olarak çimento ile odun veya türevleri (talaş, yonga, lif vb.) mineral matris yapıda çimento ile bağ yaparak çimentonun bağlayıcılığında bir arada bulunurlar.  Bu malzemeler, kolay üretime imkan sağlamaları yanında gelişmiş biyobozunma sağlamaları ve sürdürülebilir kaynaklardan üretilmelerinden dolayı yapı ve konstrüksiyon işleri için uygundurlar. Odun-çimento esaslı kompozit malzemeler, sentetik reçine ile üretilmiş kompozitlere göre daha yüksek yangına, dış atmosferik şartlara ve biyolojik bozunmalara dayanım gösterirler. Günümüzde, çimento esaslı kompozitler çok sayıda literatür bilgileri mevcuttur. Birçok araştırmacı tarafından çimento-esaslı kompozit malzemelerin üzerine çalışmalar yapılmış ve bulgular rapor edilmiştir. Birçok önemli ve değerli bilgiler bu çalışmalardan sağlanabilir.  Farklı odun türleri için dünyanın bazı bölgelerinde karşılaştırmalı çalışmalar yapılmış ve çimentolu üretime uygunlukları uygunluğu konusunda bazı öneriler bulunmaktadır.

A Study on the Production Process and Properties of Cement-Based Wood Composite Materials

Due to the growing environmental concern, lignocellulosic materials have become a common substitute for the conventional reinforcement element in composite strcutures. However, these natural sources are preferred to cost efficient and to increase mechanical performances. In a cement bonded composites, wood is incorporated as an aggregate in the mineral matrix (as fibres, sawdust, shavings or particles), and cement acts as a binder. These are employed due to their ease of production, and the enhanced biodegradability, leading to applications for sustainable purposes in construction applications. Wood-cement composites are considerably better performance on high fire, weathering and bio-deterioration risk applications to which solid wood and resin bonded composites are vulnerable. However, the vast of literature on cement-wood bonded composites has already been reviewed and pointed by a number of researchers. Many valuable fundamental informations have already established for utilizing wood for these products. A comprehensive results was to investigate some wood species that are abundant resources in many countries, for their suitability for manufacturing such composites.

___

  • Antona, B. and Johanson, R. (2011). Crack control of concrete structures subjected to restraint forces, influence of fibre reinforcement, Msc. Thesis, Chalmers University of Technology, Göteborg, Sweden.
  • ASTM C150 / C150M-18. (2018). Standard specification for Portland cement, ASTM International, West Conshohocken, PA.
  • Ashori, A., Tabarsa, T., & Sepahvand, S. (2011). Cement-bonded composite boards made from poplar strands, Construction and Building Materials, 26(1): 131-134.
  • Boothby, T.E., Borroughs, C.B., Bernecker, C.A., Manbeck, H.B., Ritter, M.A., Grgurevich, S., Cegelka, S. and Lee, P.D. (2001). Design of wood highway sound barriers, USDA Forest Service, FPL- Research Paper-596.Madison, WI.
  • Buchmayer, K. (1999). Plant layout and start-up off fiber cement manufacturing plants, In: Inorganic-Bonded Wood and Fiber Composite Materials, A.A. Moslemi (Ed), University of Idaho, Moscow, ID, pp.99–140.
  • Coutts, R.S.P. and Kightly, P. (1984). Bonding in wood fibre-cement composites. Journal ofMaterialsScience 19(10): 3355-3359.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2014). Wood-wool cement board: optimized inorganic coating, Proceedings of the 14’th International Inorganic-Bonded Fiber Composites Conference (IIBCC), 15-19 September 2014, Da Nang, Vietnam, pp. 154-164.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2015a). Assessing the effect of CaSO4 content on the hydration kinetics, microstructure and mechanical properties of cements containing sugars, Construction and Building Materials,143: 48-60.
  • Doudart de la Grée, G.C.H., Yu, Q.L. and Brouwers, H.J.H. (2015b). The effect of glucose on the hydration kinetics of ordinary Portland cement, in: 1’st Interntional Conf. Biobased Build. Mater., Clermont-Ferrand, France, pp. 1–6.
  • Fan, M. (1997). Dimensional instability of cement bonded particleboard. PhD Thesis. University of Wales, UK.
  • Fan, M., Dinwoodie, J.M., Bonfield, P.W., Breese, M.C. (1999). Dimensional instability of cement-bonded particleboard: behavior of cement paste and its contribution to the composite. Wood Fibre Science, 31(3):306–318.
  • Fan, M., Bonfield, P. and Dinwoodie, J. (2006). Nature and behaviour of cement bonded particleboard: structure, physical property and movement, Journal of Material Science, 41(17): 5666–5678.
  • Fan, M., Ndikontar, M. K., Zhou, X. and Ngamveng, J. N. (2012). Cement-bonded composites made from tropical woods: Compatibility of wood and cement. Construction and Building Materials,36, 135–140.
  • FCM Maschinen-und Anlagenbau GmbH. (1998). Hatschek process, (Formerly Voith in St. Pölten / Austria). http://www.fcm.at/index.html. Reach date: 18.07.2018.Fengel, D. and Wegener, G. (1984). Wood: Chemistry, Ultrastructure, Reactions, Walter de Gruyter, NY.
  • Frybort, R., Mauritz, A., Teischinger, U. and Müller. (2008). Cement bonded composites-a mechanical review, BioResources, 3: 602-626.
  • Jo, B-W. and Chakraborty, S. (2015). A mild alkali treated jute fibre controlling the hydration behaviour of greener cement paste, Scientific Reports, 5.
  • Jorge, F.C., Pereira, C. and Ferreira, J.M.F. (2004). Wood–cement composites: A review. Holz als Roh und Werkstoff, 62(5):370-377.
  • Kabir, M.M., Wang, H., Lau, K.T., Cardona, F. and Aravinthan, T. (2012). Mechanicalproperties of chemically-treated hemp fibre reinforced sandwich composites, Composites Part B-Engineering. 43(2):159-69.
  • Kuroki, Y., Nagatomi, W., Yamada, J. (1993). Manufacture of light-weight cement-bonded particle board, In: Inorganic-Bonded Wood and Fiber Composite Materials, A.A. Moslemi (Ed.), Forest Products Society, Madison, WI, pp.136–142.
  • Kruger, E.L., Adriazola, M., Matoski, A. and Iwakiri, S. (2009). Thermal analysis of wood–cement panels: heat flux and indoor temperature measurements in test cells. Constr Build Mater, 23(6):2299–2305.
  • Lan, H.F. and Huang, Y.F. (2000). Manufacturing of cement-bonded wood particle composites and acoustic characteristics. Forest Products Industries (Taiwan) 19(1): 85-99.
  • Lea, F. M. (1970). The Chemistry of Cement and Concrete. 3’rd edn, E. Arnold, London.
  • Lee, A.W.C. (1984). Physical and mechanical properties of cement bonded southern pine excelsior board, Forest Products Journal, 34(4):30-34.
  • Lee, A.W.C. and Short, P.H. (1989). Pretreating hardwood for cement-bonded excelsior board. Forest Products Journal 39(10): 68-70.
  • Li, G.Y., Wang, P.M. and Zhao, X. (2005). Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes, Carbon, 43 (6): 1239-1245.
  • Lipinsky, E.S. (1989). Potential technologies for effectively bonding wood with inorganic binders, Proceedings 1st Inorganic Bonded Fiber Composites Symposium, A.A. Moslemi (Ed), Forest Products Research Society, pp. 53-57.
  • Malhotra, R. (2013). http://chemistryofmaterials2013.wikidot.com/rahul-malhotra, Reach date: 18.07.2018.
  • Moslemi, A.A. (1989). Wood-cement panel products: coming of age, in Proceedings 1st Inorganic Bonded Fiber Composites Symposium, A.A. Moslemi (Ed), Forest Products Research Society, pp. 12-18.
  • Moslemi, A.A. (1993). Inorganic-bonded wood composites: From sludge to siding. Journal of Forestry, 27-29.
  • Moslemi, A.A. and Begum, S. (2017). Wood Composites: Mineral-Bonded, In: Reference Module in Materials Science and Materials Engineering.
  • Mougel, E., Beraldo, A.L. and Zoulalian, A. (1995). Controlled dimensional variations of a wood-cement composite, Holzforschung 49(5):471–477.
  • Simatupang, M.H. and Geimer, R.L. (1990). Inorganic binder for wood composites: feasibility and limitations, Wood adhesive symposium proceedings, May 16-18, 1990, Madison, WI. pp. 169–176. Wolfe, R.W. and Gijnolli, A. (1997). Cement-Bonded Wood Composites as an Engineering Material. Use of Recycled Wood and Paper in Building Applications, Forest Products Society Proceedings No. 7286, Madison, WI. pp. 84–91.
  • Pickering, K.L., Efendy, M.G.A., Le, T.M. (2016). Areview of recent developments in natural fibre composites and their mechanical performance, Composites Part A: Applied Science and Manufacturing, 83: 98-112.
  • Semple, K.E. and Evans, P.D. (2004). Wood-cement composites - Suitability of Western Australian mallee eucalypt, blue gum and melaleucas, Rural Industries Research and Development Corporation, Publication No. 04/102. Kingston, AU.
  • Plekhanova, T.A., Keriene, J., Gailius, A. and Yakovlev, G.I. (2007). Structural, physical and mechanical properties of modified wood–magnesia composite. Construction Build Material, 21:1833–1838.
  • Wolfe, R.W. and Gjinolli, A. (1999). Durability and strength of cementbonded wood particle composites made from construction waste. Forest Products Journal 49(2):24–31.
  • Sjöström, E. (1993). Wood Chemistry: Fundamentals and Applications, Academic Press, NY.
  • Taylor, H.F.W. (1997). Cement chemistry. Thomas Telford.
  • Van Elten, G.J. (1996). Innovation in the Production of Cement-Bonded Particleboard and Wood-Wool Cement Board, 5th International Inorganic Bonded Wood and Fiber Composite Materials Conference. Spokane, Washington, USA.
  • Van Elten, G. J. (2006). Production of wood wool cement board and wood strand cement board (eltoboard) on one plant and applications of the products. Proceedings 10th Int. Inorganic-Bonded Fiber Composites Conference (pp. 1–12). Sao Paulo-Brazil.
  • Youngquist, J. A. (1999). Wood-based Composites and Panel Products, In: Wood handbook: wood as an engineering material, USDA Forest Service, FPL; GTR-113: Pp. 10.1-10.31.
Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2010
  • Yayıncı: Burdur Mehmet Akif Ersoy Üniversitesi
Sayıdaki Diğer Makaleler

2.45 GHz Frekasında Optimum Bant Durduran Filtre Tasarımı ve Optimizasyonu

Büşra ÖZTÜRK, Özlem COŞKUN

İğde (Elaeagnus angustifolia L.)’nin Yetiştiği Toprakların Bazı Fiziksel ve Kimyasal Özellikleri ile Ağır Metal Durumunun Değerlendirilmesi: Erzurum Örneği

Nesrin YILDIZ, Murat ZENGİN

Imidacloprid’in Farklı Dozlarının Panonychus ulmi Koch (Acari: Tetranychidae) ve Predatörü Neoseiulus californicus (McGregor) (Acari:Phytoseiidae)’un Yaşam Çizelgesi Üzerine Etkileri

Sibel YORULMAZ SALMAN, Cenk KESKİN, Betül BAL, Mustafa Onur DÖNMEZ

Yeşil Yol Planlama: Denizli Pamukkale İlçesi Örneği

Murat ZENGİN, Duygu DOĞAN, Sinem ÖZDEDE

Çimento Esaslı Odun Kompozit Malzemelerin Üretim Prosesi ve Özellikleri Üzerine Bir Çalışma

Halil Turgut ŞAHİN, Ali İhsan KAYA, Ömer Ümit YALÇIN, Şemsettin KILINÇARSLAN, Yasemin ŞİMŞEK, George İ. MANTANİS

İmmün Kontrol Noktası İnhibitörleri Ctla-4 ve Pd-1/Pd-l1’in İmmünoterapideki Yeri

Kübra KAHVECİ, Melisa TÜRKOĞLU

Çanakkale Kentsel Yapısına Eleştirel Bir Yaklaşım: Butik Kent

Yavuz ALKAN

Otopark Alanlarının Tasarım İlkeleri ve Kullanıcı Talepleri: Süleyman Demirel Üniversitesi Yerleşkesi Örneği

Hatice YILDIRIM

Hicaznar Nar (Punica granatum L.) Çeşidinde İyi Tarım Uygulamaları (İTU)

Nilda ERSOY

Ulupınar Çayı ve Olimpos Deresi (Antalya) Su Kalitesinin Fizikokimyasal Parametrelere ve Epilitik Diyatomlara Göre Belirlenmesi

Tuba Elif YAY, Bahadır ÖZEL, Selda TEKİN ÖZAN