µc-Si:H İnce Film Malzemeler ve Metastabilite Etkileri

Hidrojenlendirilmiş mikrokristal silisyum (µc-Si:H) ince film malzemeler sahip oldukları optoelektronik özellikleri, üretim sürecinin kolaylığı ve ucuzluğu açısından tek kristal silisyum (c-Si) ve Hidrojenlendirilmiş amorf silisyuma (a-Si:H) göre daha çok tercih edilen bir malzeme grubudur. Özellikle malzeme üretim teknolojilerinin gelişmesi ile µc-Si:H ince film malzemelerin kullanım alanları da gelişmiş ve gelişmektedir. Diyot, Sensör, TFT, Fotovoltaik ve Heteroeklem uygulamarı bu gelişmeye örneklerdir. Bu gelişime bağlı olarak yüksek elektronik kalitede (State of Art) malzemelerin üretilmesi ve uygulama alanları konusunda araştırmacıların dikkatini çekmektedir. Ancak µc-Si:H ince film malzemeler üretim sonrası elektronik olarak kararsızlık (metastabilite) problemi bulunmaktadır. Araştırmacılar metastabilite probleminin 1983 yılında belirlenmesinden beri hala çözümü için çalışıyorlar. Maalesef µc-Si:H ince film malzemelerin metastabilite problemi için nihai bir çözümü günümüze kadar bulunamamıştır. Bu nedenle bu çalışmada µc-Si:H ince film malzemenin üretimi, kristalografik yapısı, elektronik yapısı, optiksel ve elektriksel özellikleri detaylı bir literatür araştırması ve bulguları ile metastabilite problemi bakış açısından incelenmiştir.

µc-Si: H Thin Film Materials and Metastability Effects

Hydrogenated Microcrystalline Silicon thin film materials (µc-Si:H) are much more preferable material group than Single Crystalline Silicon (c-Si) and Hydrogenated Amorphous Silicon (a-Si:H) due to their optoelectronic specification, easy and cheap production techniques. New application areas of µc-Si:H have been improved with concurrently production technology improvement. Diode, Sensors, TFT, Photovoltaic and Heterojunction applications are examples of these improvements. Depending on these production improvement, high quality µc-Si:H can be produced. Therefore, these improvements draw attention of scientists regarding production of high quality electrical materials and their application areas. However; µc-Si:H materials have electronic metastability problems after production. Researchers have been working on solving this metastability problem of µc-Si:H for since 1983. Unfortunately, ultimate solution of metastability problem for µc-Si:H material has not been revealed until now. Thus, in this study, µc-Si:H thin films production, crystallographic structure, electronic structure, optical and electrical specification of µc-Si:H thin film chronologically have been analyzed through a detailed literature review and findings have been investigated through the perspective of metastability problem.

___

  • Brüggemann, R., & Souffi, N. (2006). Metastable dark and photoconductive properties of microcrystalline silicon. Journal of Non-Crystalline Solids, 352(9-20), 1079–1082. http://doi.org/10.1016/j.jnoncrysol.2005.11.089
  • Finger, F., Carius, R., Dylla, T., Klein, S., Okur, S., & Günes, M. (2003). Stability of microcrystalline silicon for thin film solar cell applications. IEE Proceedings - Circuits, Devices and Systems, 150(4), 300. http://doi.org/10.1049/ip-cds:20030636
  • Finger, F., Hapke, P., Luysberg, M., Carius, R., Wagner, H., & Scheib, M. (1994). Improvement of grain size and deposition rate of microcrystalline silicon by use of very high frequency glow discharge. Applied Physics Letters, 65(20), 2588. http://doi.org/10.1063/1.112604
  • Finger, F., Müller, J., Malten, C., & Wagner, H. (1998). Electronic states in hydrogenated microcrystalline silicon. Philosophical Magazine Part B, 77(3), 805–830. http://doi.org/10.1080/13642819808214836
  • Günes, M., Cansever, H., Yilmaz, G., Smirnov, V., Finger, F., & Brüggemann, R. (2012). Metastability effects in hydrogenated microcrystalline silicon thin films investigated by the dual beam photoconductivity method. Journal of Non-Crystalline Solids, 358(17), 2074–2077. http://doi.org/10.1016/j.jnoncrysol.2012.01.063
  • Maissel, L. I., and Clang, R., (eds.), Handbook of Thin Film Technology, McGraw-Hill, New York (1970)
  • Matsuda, A. (1983). Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma. Journal of Non-Crystalline Solids, 59-60(PART 2), 767–774. http://doi.org/10.1016/0022-3093(83)90284-3
  • Matsumura, H. (1991). Formation of Polysilicon Films by Catalytic Chemical Vapor Deposition (cat-CVD) Method. Japanese Journal of Applied Physics, 30(Part 2, No. 8B), L1522–L1524. http://doi.org/10.1143/JJAP.30.L1522
  • Meier, J., Flückiger, R., Keppner, H., & Shah, a. (1994). Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? Applied Physics Letters, 65(7), 860. http://doi.org/10.1063/1.112183
  • S: Reynolds, V.Smirnov, F.Finger, C.Main, R. C. (2005). TRANSPORT AND INSTABILITIES IN MICROCRYSTALLINE SILICON FILMS, 7(1), 91–98.
  • Shah, A., Meier, J., Wyrsch, N., Kroll, U., Droz, C., & Graf, U. (2003). Material and solar cell research in microcrystalline silicon. Solar Energy Materials and Solar Cells, 78, 469–491. http://doi.org/10.1016/S0927-0248(02)00448-8
  • Shah,A. Thin Film Silicon Solar Cells,Crcpress(2010) ISBN 9781439808108
  • Smirnov, V., Reynolds, S., Finger, F., Main, C., & Carius, R. (2004). The Influence of Light-Soaking and Atmospheric Adsorption on Microcrystalline Silicon Films studied by Coplanar Transient Photoconductivity. MRS Proceedings, 808, A9.11. http://doi.org/10.1557/PROC-808-A9.11
  • Smirnov, V., Reynolds, S., Main, C., Finger, F., & Carius, R. (2004). Aging effects in microcrystalline silicon films studied by transient photoconductivity. Journal of Non-Crystalline Solids, 338-340, 421–424. http://doi.org/10.1016/j.jnoncrysol.2004.03.010
  • Staebler, D. L., & Wronski, C. R. (1977). Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters, 31(4), 292. http://doi.org/10.1063/1.89674
  • Usui, S., & Kikuchi, M. (1979). Properties of heavily doped GDSi with low resistivity. Journal of Non-Crystalline Solids, 34(1), 1–11. http://doi.org/10.1016/0022-3093(79)90002-4
  • Veprek, S., Iqbal, Z., Kuhne, R. O., Capezzuto, P., Sarott, F., & Gimzewski, J. K. (1983). Properties of microcrystalline silicon. IV. Electrical conductivity, electron spin resonance and the effect of gas adsorption. Journal of Physics C: Solid State Physics, 16(32), 6241–6262. http://doi.org/10.1088/0022-3719/16/32/015
  • Vepřek, S., & Mareček, V. (1968). The preparation of thin layers of Ge and Si by chemical hydrogen plasma transport. Solid-State Electronics, 11(7), 683–684. http://doi.org/10.1016/0038-1101(68)90071-3
  • Vetterl, O., Finger, F., Carius, R., Hapke, P., Houben, L., Kluth, O., … Wagner, H. (2000). Intrinsic microcrystalline silicon: A new material for photovoltaics. Solar Energy Materials and Solar Cells, 62(1-2), 97–108. http://doi.org/10.1016/S0927-0248(99)00140-3
  • Yilmaz, G., Cansever, H., Sagban, H. M., Günes, M., Smirnov, V., Finger, F., & Brüggemann, R. (2014). Reversible and irreversible effects after oxygen exposure in thick (>1 μm) silicon films deposited by VHF-PECVD on glass substrates investigated by dual beam photoconductivity 1. Canadian Journal of Physics, 92(7/8), 778–782. http://doi.org/10.1139/cjp-2013-0638
Mehmet Akif Ersoy Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2010
  • Yayıncı: Burdur Mehmet Akif Ersoy Üniversitesi