FİZİK VE KİMYA DİSİPLİNLERİ İÇİN İLGİ ÇEKİCİ OLAN BAĞLAMLARIN BAĞLAM DİSİPLİN İLİŞKİSİ KAPSAMINDA BELİRLENMESİ

Bu çalışmanın birinci amacı, bağlamların disiplinlere göre tek disiplinli, iki disiplinli ve çok disiplinli olarak sınıflandırılmasıdır. İkinci amaç ise öğretmen ve öğrencilerin öğrenmek ve öğretmek istedikleri bağlamların belirlenmesidir. Bu çalışmada kullanılan anket formunda bulunan 77 tane bağlam lise fizik ve kimya öğretim programlarından seçilmiştir. Örneklem Ankara’daki 3 üniversitenin, 3 bölümünden 48 akademisyen ve 330 öğretmen adayı olmak üzere toplam 378 katılımcıdan oluşmaktadır. Bağlam ve disiplin ilişkisi ile ilgili olarak yapılan betimleyici analiz sonuçlarına göre bağlamlar 4 gruba ayrılmıştır. Bağlamların 48 tanesi yalnızca fizik ile 18 tanesi yalnızca kimya ile ilişkilendirilmiş, 5 tanesi hem fizik hem de kimya ile ilişkili bulunmuş sadece bir bağlam çok disiplinli olarak sınıflandırılmıştır. Anketteki akademisyen ve aday öğretmenlerin bu kavramları öğrenme ve öğretme isteklerini belirleyen kısım incelendiğinde 65 bağlamın orta düzeyde öğrenmek ve öğretilmek istendiği ortaya çıkmıştır. Bu çalışma sonunda hem yüksek oranda öğrenilmek hem de öğretilmek istenen ve çok disiplinli olan “insan” bağlamı ön plana çıkmıştır.

DETERMINING THE APPEALING CONTEXTS FOR PHYSICS AND CHEMISTRY REGARDING THE CONTEXT DISCIPLINE RELATIONSHIP

The primary purpose of this study is to classify contexts as one-disciplinary, two-disciplinary and multidisciplinary according to the disciplines. Secondary purpose is to determine which contexts are appropriate for teachers and students to learn and teach in the classroom environment. The 77 contexts in the questionnaire were selected from high school physics and chemistry curricula. The sample is a total of 378 participants from 3 universities in Ankara, 48 academics and 330 pre-service teachers from 3 departments. According to the results of descriptive analysis related to context and discipline relation, contexts are divided into 4 groups. Only 48 were associated with physics and 18 with only chemistry, and 5 were associated with both physics and chemistry. Only one context was classified as multidisciplinary. In the second part of the questionnaire that aimed to determine the desire of academics and pre-service teachers to learn and teach these contexts was examined, it was revealed that 65 contexts wanted to be learned and taught moderately. At the end of this study, the "human" context, which is a multidisciplinary and desired to learn and teach at a high level, has come to the forefront.

___

  • Aikenhead, G. S. (2003). Chemistry and physics instruction: Integration, ideologies, and choices. Chemistry Education Research and Practice, 4(2), 115-130.
  • Baykal, A. (2004). Program Geliştirme Yaklaşımlarında Alansal Bağlam. Paper presented at the 8th National Educational Sciences Conference, Malatya, Turkey.
  • Beane, J. (1991). The middle school: The natural home of integrated curriculum. Educational Leadership, 49(2), 9-13.
  • Beane, J. A. (1995). Curriculum integration and the disciplines of knowledge. Phi Delta Kappan, 76(8), 616-622.
  • Bennett J., Gräsel C., Parchmann I., & Waddington D. (2005). Context-based and conventional approaches to teaching chemistry: comparing teachers’ views. International Journal of Science Education, 27(13), 1521–1547.
  • Bennett J., Lubben F., & Hogarth S. (2007). Bringing science to life: A synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Science Education, 91(3), 347–370.
  • Booker, M. J. (2007). A roof without walls: Benjamin Bloom’s taxonomy and the misdirection of American education. Academic Questions, 20(4), 347-355.
  • Bülbül, M. Ş. (2013). Sun: A major context for educational purposes. Solar Campus Conference: Ankara.
  • Bülbül, M. Ş. (2016). Big Data with small cases: A method for discovering students centered contexts for Physics courses. Themes in Science and Technology Education, 8(2), 105-114.
  • Bülbül, M. Ş., & Eryılmaz, A. (2010). Human as a Context in Learning Physics: A Guide for Textbook Authors. GIREP-ICPE-MPTL Conference Proceedings. Reims: Groupe International de Recherche sur l’Enseignement de la Physique. (p. 57-58)
  • Bülbül, M. Ş., & Matthews, K. (2012). Bağlam temellı̇ eğı̇tı̇mı̇n olası geleceğı̇. In X. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi (p. 548). Niğde. Retrieved from http://kongre.nigde.edu.tr/xufbmek/dosyalar/tam_metin/pdf/2487-30_05_2012-22_56_5 7.pdf
  • Choi, J. S., & Song, J. (1996). Students' preferences for different contexts for learning science. Research in Science Education, 26(3), 341-352.
  • Çiçek, Ö., & Ilhan, N. (2017). Evaluating interest in acids–bases: development of an acid–base interest scale (ABIS) and assessment of pre-service science teachers' interest. Chemistry Education Research and Practice, 18(4), 630-640.
  • Elmas, R., & Eryılmaz, A. (2015). How to write good quality contextual science questions: criteria and myths. Journal of Theoretical Educational Science, 8(4), 564-580.
  • Elmas, R., & Geban, Ö. (2016). The effect of context based chemistry ınstruction on 9th grade students' understanding of cleaning agents topic and their attitude toward environment. Education and Science, 41(185), 33-50.
  • Finch, C.R., Frantz, N.R., Mooney, M., & Aneke, N.O. (1997). Designing the thematic curriculum: An all aspects approach. Berkeley, CA: National Center for Research in Vocational Education, University of California, Berkeley.
  • Fraenkel, J. R., Wallen, N. E., & Hyun, H. H. (2011). How to design and evaluate research in education. New York: McGraw-Hill Humanities/Social Sciences/Languages.
  • Gilbert, J. K., Bulte, A. M., & Pilot, A. (2011). Concept development and transfer in context‐based science education. International Journal of Science Education, 33(6), 817-837.
  • Habig, S., Blankenburg, J., van Vorst, H., Fechner, S., Parchmann, I., & Sumfleth, E. (2018). Context characteristics and their effects on students’ situational interest in chemistry. International Journal of Science Education, 40(10), 1154-1175.
  • Ioannidou, I. & Banos, V. (2009). Greek Trends in Cross-Thematic-Integration of Curriculum as in Unified Teaching of Natural Sciences. Paper presented at 2009 ESERA conference, Istanbul, Turkey.
  • Jeong, H. S., & Park, J. W. (2011). Practical Suggestions for the Effective Use of Everyday Context in Teaching Physics-based on the analysis of students' learning processes. Journal of The Korean Association for Science Education, 31(7), 1025-1039.
  • Kaltakcı, D., & Eryılmaz, A. (2011). Context-based questions: optics in animal eyes. Physics Education, 46(3), 323.
  • Keskin, F., & Çam, A. (2019). Yaşam Temelli REACT Stratejisinin Altıncı Sınıf Öğrencilerinin Akademik Başarısına ve Fen Okuryazarlığına Etkisi. Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi, (49), 38-59.
  • King, D. (2012). New perspectives on context-based chemistry education: using a dialectical sociocultural approach to view teaching and learning. Studies in Science Education, 48(1), 51-87.
  • Mamombe, A., Kazeni, M., & De Villiers, R. (2016). Context preferences of educators and learners for studying genetics: a case study in South Africa. African Journal of Research in Mathematics, Science and Technology Education, 20(2), 165-174.
  • Mayoh, K., & Knutton, S. (1997). Using out‐of‐school experience in science lessons: reality or rhetoric?. International Journal of Science Education, 19(7), 849-867.
  • Olsher, G., & Dreyfus, A. (1999). Biotechnologies as a context for enhancing junior high-school students' ability to ask meaningful questions about abstract biological processes. International Journal of Science Education, 21(2), 137-153.
  • Perkins, D. N. (1991). Educating for insight. Educational Leadership, 49(2), 4-8.
  • Peşman, H., & Özdemir, Ö. F. (2012). Approach–method interaction: The role of teaching method on the effect of context-based approach in physics instruction. International Journal of Science Education, 34(14), 2127-2145.
  • Prins, G. T., Bulte, A. M., & Pilot, A. (2018). Designing context-based teaching materials by transforming authentic scientific modelling practices in chemistry. International Journal of Science Education, 40(10), 1108-1135.
  • Rodrigues, S. (2001). Opportunities to Learn Science? Multiple Contexts at Work in a Science Classroom. David Clarke (Ed.) In Perspectives on Practice and Meaning in Mathematics and Science Classrooms (pp. 197-230). Kluwer Academic Publishers, Dordrecht.
  • Rodrigues, S. (2006). Pupil‐appropriate contexts in science lessons: the relationship between themes, purpose and dialogue. Research in Science & Technological Education, 24(2), 173-182.
  • Sáez, M.J., & Carretero, A.J. (2002). The challenge of innovation: The new subject natural sciences in Spain. Journal of Curriculum Studies, 34, 343-363.
  • Serin, G. (2009). The Effect of Problem Based Learning Instruction on 7th Grade Students’ Science Achievement, Attitude Toward Science and Scientific Process Skills (Doctoral Dissertation). Middle East Technical University, Turkey.
  • Song, J., & Choi, J. S. (1994). Students' preferences on different contexts in learning basic concepts of mechanics. Physics Teaching, 12, 82-87.
  • Venville, G., Rennie, L., & Wallace, J. (2005). Student understanding and application of science concepts in the context of an integrated curriculum setting. International Journal of Science and Mathematics Education, 1(4), 449-475. Whitelegg, E., & Parry, M. (1999). Real-life contexts for lear ning physics: meanings, issues and practice. Physics Education, 34(2), 68-72.
Mehmet Akif Ersoy Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • ISSN: 1302-8944
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2007
  • Yayıncı: BURDUR MEHMET AKİF ERSOY ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

ÖZEL YETENEKLİ ÖĞRENCİLERİN PROGRAMLAMA DİLİ ÖĞRETİMİNDE KODU GAME LAB YAZILIMININ PROBLEM ÇÖZME BECERİLERİ DÜZEYİNE ETKİSİ

Ayşe ALKAN

ÖĞRETMEN ADAYLARININ SINIF YÖNETİMİNDE TERCİH ETTİKLERİ DİSİPLİN MODELLERİ

Aygül OKTAY

ORTAOKUL MATEMATİK ÖĞRETMENİ ADAYLARININ ORİGAMİ DERSİNDE EDİNDİKLERİ DENEYİMLER

Seher AVCU, Ramazan AVCU

ORTAOKUL ÖĞRETMENLERİNİN ALGILARINA GÖRE OKUL YÖNETİCİLERİNİN DEĞİŞİM YÖNETİMİ YETERLİLİKLERİ İLE ÖRGÜTSEL GÜVEN DÜZEYLERİ ARASINDAKİ İLİŞKİ

Gamze TUTİ, Şükrü ADA

ÖĞRETMEN ADAYLARININ ÇEVRE OKURYAZARLIK BİLEŞENLERİNİN FARKLI DEĞİŞKENLERE GÖRE İNCELENMESİ

Cengiz ÖZYÜREK, Filiz DEMİRCİ, Hatice GÜLER, Jülide SARIGÖL, Banu TEP, MURAT ÇETİNKAYA

VELİLERİN GÖZÜNDEN SOSYAL MEDYANIN ORTAOKUL ÖĞRENCİLERİ AÇISINDAN YARAR VE RİSKLERİ

Mithat AYDIN, Türkan ÇELİK

ORTAÖĞRETİM ÖĞRETMENLERİN KAYIRMACILIK ALGILARI İLE PSİKOLOJİK SERMAYE DÜZEYLERİ ARASINDAKİ İLİİKİNİN İNCELENMESİ197

Gökhan KAHVECİ, Sedef Selin GÜLAY, ELİF BAHADIR

A study on the adolescents’ attitudes towards environment and their empathic tendency

Aysel KÖKSAL AKYOL, Özlem KÖRÜKÇÜ, Güneş SALI, Serpil SARIASLAN

SES EĞİTİMİ ÇALIŞMALARININ SINIF ÖĞRETMENİ ADAYLARININ KONUŞMA BECERİLERİNE ETKİSİ

Saadet KÖSRELİ, Demet GÜRHAN

OKUL MÜDÜRLERİNİN LİDERLİK BECERİLERİNE YÖNELİK ÖĞRETMENLERİN METAFORİK ALGILARI

Gökçe ÖZDEMİR, SEVİLAY ŞAHİN, Necati ÖZTÜRK