Kültüre Alınmış Pleurotus ostreatus’un İnsan Respiratuvar Sinsityal Virüsü (HRSV)’ne Karşı İn Vitro Antiviral Etkisinin Değerlendirilmesi

İnsan respiratuvar sinsityal virüsü (HRSV), bebekler, çocuklar, yaşlı yetişkinler ile solunum, kalp veya immun sistem yetersizliği olan her yaştan insanlarda ciddi üst ve alt solunum yolu enfeksiyonunun önde gelen nedenlerindendir. Virüsün kontrolü ve önlenmesine yönelik yeni yöntemlere olan gereksinim, HRSV’den etkilenen insanların sayısını azaltmak için son derece önemlidir. Mantarlar, yeni antiviral etki mekanizmalarına sahip ilaçların öncü bileşiklerini içerirler. Nihai hedefi anti-HRSV ilaç adaylarını tespit etmek olan bu çalışma, Pleurotus ostreatus (Jacq.) P. Kumm’dan elde edilen metanol, etanol ve su ekstrelerinin HRSV’ye karşı antiviral aktiviteye sahip olup olmadığını belirlemek amacıyla yapılmıştır. Ekstrelerin HRSV’ye karşı antiviral aktivitesi kolorimetrik XTT testi ile değerlendirilmiştir. Ekstrelerin HRSV’ye karşı %50 koruma sağlayan konsantrasyonu EC50 olarak tanımlanmış ve CC50 (%50 hücresel sitotoksisite gösteren konsantrasyon)’nin EC50’ye oranından da seçicilik indeksi (SI) belirlenmiştir. Ribavirin (RBV) anti-HRSV aktiviteye yönelik pozitif kontrol olarak kullanılmıştır. Sitotoksite sonuçlarına göre, en toksik ekstre 12500 µg/mL MNTC (Maksimum non toksik konsantrasyon) ve 23811.05 CC50 ile metanol olup, bunu 3125 µg/mL MNTC, 5967.67 CC50 değerleriyle etanol ve 3125 µg/mL MNTC, 6622.28 CC50 değerleriyle su ekstresi izlemiştir. RBV için ise bu değerler 0.98 µg/mL MNTC ve 117.00 CC50 dir. Araştırma sonucunda, HRSV’ye karşı en güçlü antiviral aktiviteyi 2910.57 µg/mL EC50 ve 8.18 SI değeri ile metanol ekstresi göstermiş, bunu sırasıyla, etanol (EC50: 900.71 µg/mL, SI: 6.63) ve su (EC50: 1654.55 µg/mL, SI: 4.00) ekstreleri takip etmiştir. RBV için bu değerler 4.19 EC50 ve 27.92 SI tir. Sonuç olarak, P. ostreatus ekstrelerinin HRSV’ye karşı klinikte kullanılan ilaçlara karşı bir alternatif olarak geliştirilebilmesi için daha ileri çalışmalara layık olduğunu söyleyebiliriz. Bu çalışma, P. ostreatus’un anti-HRSV aktivitesine yönelik ilk rapordur.

Evaluation of in Vitro Antiviral Activity of Cultured Pleurotus ostreatus Against Human Respiratory Syncytial Virus (HRSV)

Human respiratory syncytial virus (HRSV) is the leading cause of serious upper and lower respiratory infections in infants, children, elderly adults and people of all ages with respiratory, heart or immunodeficiency. The requirement for new methods of virus control and prevention is crucial to reducing the number of people affected by HRSV. Fungi contain the precursor compounds of drugs with novel mechanisms of antiviral action. This study, whose ultimate goal is to identify anti-HRSV drug candidates, was conducted to determine whether methanol, ethanol and aqueous extracts from Pleurotus ostreatus (Jacq.) P. Kumm having antiviral activity against HRSV. Antiviral activity of extracts against HRSV was assessed by colorimetric XTT test. The concentration of extracts providing 50% protection against HRSV was defined as EC50 and the selectivity index (SI) was determined from the CC50 (concentration showing 50% cellular cytotoxicity) to EC50. Ribavirin (RBV) was used as a positive control for anti-HRSV activity. According to cytotoxicity results; the most toxic extract was methanol with the values of 12500 µg/mL for MNTC and 23811.05 for CC50, and it was followed by ethanol (3125 µg/mL for MNTC and 5967.67 for CC50) and aqueous extract (3125 µg/mL for MNTC, 6622.28 for CC50). These values for RBV was 0.98 µg/mL MNTC and 117.00 CC50. As a result of the research, the strongest antiviral activity against HRSV showed methanol extract with 2910.57 µg/mL EC50 and 8.18 SI values, followed by ethanol (EC50: 900.71 µg/mL, SI: 6.63) and water (EC50: 1654.55 µg/mL, SI: 4.00) extracts, respectively. In conclusion, we can say that P. ostreatus extracts are worthy of further work in fighting HRSV infection (detection of the active compound/compounds responsible for anti-HRSV activity). This study is the first report of P. ostreatus for anti-HRSV activity.

___

  • Andrighetti-Fröhmer, C.R., Antonio, R.V., Creczynski-Pasa, T.B., Barardi, C.R.M. ve Simões, C.M.O. (2003). Cytotoxicity and Potential Antiviral Evaluation of Violacein Produced by Chromobacterium violaceum. Mem. Inst. Oswaldo Cruz, 98: 843-848.
  • Anonim, (2003). American Academy of Pediatrics. Respiratory Syncytial Virus. In: Pickering, L.K., ed. Red Book: 2003, Report of the Committee on Infectious Diseases, 26 th ed. Elk Grove Village, IL: American Academy of Pediatrics, 524.
  • Ball, C.B. (1994). Respiratory Syncytial Virus, “Zuckerman A J, Banatvala J E, Pattison J R (eds)”: Principles and Practice of Clinical Virology”. Chichester. John Wiley and Sons, s. 270.
  • Beluhan, S. ve Ranogajec, A. (2011). Chemical Composition and non-volatile Components of Croatian Wild Edible Mushrooms. Food Chem, 124: 1076-1082.
  • Benedict, R.G. ve Brady, L.R. (1972). Antimicrobial Activity of Mushroom Metabolites. J. Pharm. Sci., 61(11) 1820-182. Carlile, M.J. ve Watkinson, S.C. (1994). The Fungi. London: Academic Press, 373-409.
  • Chattopadhyay, D., Chawla-Sarkar, M., Chatterjee, T., Dey, R.S., Bag, P., Chakraborti, S. ve Khan, M.T.H. (2009). Recent Advancements for the Evaluation of Antiviral Activities of Natural Products. N Biotechnol, 25: 347-368.
  • Chihara, G., Hamuro, J., Maeda, Y.Y., Arai, Y. ve Fukuoka, F. (1970). Fractionation and Purification of the Polysaccharides with Marked Antitumor Activity, Especially Lentinan, from Lentinus edodes (Berk.) Sing. (an edible mushroom). Cancer Res., 30(11) 2776-2781.
  • Collins, P.L., Chanock, R.M., Mclntosh, K. (1996). Parainfluenza viruses, “Fields, B.N, Knipe, D.M., Howley, P.M. (eds.): Fields Virology”, Philadelphia: Lippincott-Raven Publishers, 1313.
  • Conchran, K.W. (1978). Medicinal Effects, in: The Biology and Cultivation of Edible Mushrooms, “Chung, S.T. ve Hayes, W.A. (eds)”. New York: Academic Press.
  • Dargan, D.J. ve Subak-Sharpe, J.H. (1986). The Antiviral Activity against Herpes Simplex Virus of the Triterpenoid Compounds Carbenoxolone Sodium and Cicloxolone Sodium. J Antimicrob Chemother, 18 Suppl B: 185-200.
  • Denis, R.B. (1995). Mushrooms: Poisons and Panaceas, New York: W.H. Freeman and Co.
  • Dimou, D.M., Georgala, A., Komaitis, M. ve Aggelis, G. (2002). Mycelial Fatty Acid Composition of Pleurotus spp. and its Application in the Intrageneric Differentiation. Mycol Res, 106(8) 925-929.
  • El-Fakharany, E.M., Haroun, B.M., Ng, T.B. ve Redwan, E.R. (2010). Oyster Mushroom Laccase Inhibits Hepatitis C Virus Entry into Peripheral Blood Cells and Hepatoma Cells. Protein & Peptide Letters, 17: 1031-1039.
  • Hammer, J., Numa, A. ve Newth, C.J.L. (1995). Albuterol Responsiveness in Infant with Respiratory Failure Caused by Respiratory Syncytial Virus Infection. The Journal of Pediatrics, 127: 485-490.
  • Ho, W.S. (2008). Antiviral Activity of the Medicinal Plants, Adina Pilulifera, Narcissus Tazetta and Wikstroemia Indica, Against Respiratory Syncytial Virus. Hong Kong: Chinese University of Hong Kong.
  • Hu, J.M. ve Hsiung, G.D. (1989). Evaluation of New Antiviral Agents: I. In vitro perspectives. Antiviral Res, 11(5-6) 217-32.
  • Jing, Y., Gao, Y., Wang, W., Cheng, Y., Lu, P., Ma, C. ve Zhang, Y. (2016). Optimization of the Extraction of Polysaccharides from Tobacco Waste and Their Biological Activities. Int. J. Biol. Macromol., 91: 188-197.
  • Kabanov, A., Kosogova, T., Shishkina, L., Tepliakova, T., Skarnovich, M., Mazurkova, N., Puchkova, L., Malkova, E., Stavskiĭ, E. ve Drozdov, I. (2011). Study of Antiviral Activity of Extracts Obtained from Basidial Fungi against Influenza Viruses of Different Subtypes in Experiments in Vitro and in Vivo. Zhurnal mikrobiologii epidemiologi i immunobiologii, 1: 40-43.
  • Kim, Y.S., Eo, S.K., Oh, K.W., Lee, C.K. ve Han, S.S. (2000). Antiherpetic Activities of Acidic Protein Bound Polysaccharide Isolated from Ganoderma lucidum alone and in Combinations with Interferons. J. Ethnopharmacol, 72(3) 451-458.
  • Lakhanbal, T.N. ve Rana M. (2005). Medicinal and Nutraceutical Genetic Resources of Mushrooms. Cambridge: Cambridge University Pres, Plant Genetic Resources, 3: 288-303.
  • Ma, S.C., Du, J., But, P.P.H., Deng, X.L., Zhang, Y.W., Ooi, V.E. C., Xu, H.X., Lee, S.H.S. ve Lee, S.F. (2002). Antiviral Chinese Medicinal Herbs against Respiratory Syncytial Virus. J. Ethnopharmacol, 79(2) 205-211.
  • Mulholland, E.K., Olinsky, A. ve Shann, F.A. (1996). Clinical Findings and Severity of Acute Bronchiolitis. Lancet, 335: 1259-1261.
  • Palacios, I., Garcı’a-Lafuente, A., Guillamo’n, E. ve Villares, A. (2012). Novel Isolation of Water-Soluble Polysaccharides from the Fruiting Bodies of Pleurotus ostreatus mushrooms. Carbohydr. Res, 358: 72-77.
  • Rota, S. (1999). Solunum Sinsityal Virus. “Ustaçelebi, Ş. (ed)”. Temel ve Klinik Mikrobiyoloji. Ankara: Güneş Kitabevi, 941-943.
  • Santoyo, S., Ramirez-Anguiano, A.C., Aldars-Garcia, L., Reglero, G., ve Soler-Rivas, C. (2012). Antiviral Activities of Boletus edulis, Pleurotus ostreatus and Lentinus edodes Extracts and Polysaccharide Fractions against Herpes simplex virus type 1. J Food Nutr Res, 51(4) 225-235.
  • Schinazi, R.F., Coats, S.J., Bassit, L.C., Lennerstrand, J., Nettles, J.H. ve Hurwitz, S.J. (2009). Approaches for the Development of Antiviral Compounds: the Case of Hepatitis C virus. Handb. Exp. Pharmacol, 189: 25-51.
  • Tsai, S.Y., Huang, S.J., Lo, S.H., Wu, T.P., Lian, P.Y. ve Mau, J.L. (2009). Flavour Components and Antioxidant Properties of Several Cultivated Mushrooms. Food Chem, 113: 578-584.
  • Wang, H. ve Ng, T.B. (2000). Isolation of a Novel Ubiquitin-Like Protein from Pleurotus ostreatus Mushroom with Anti-Human Immunodeficiency Virus, Translation-Inhibitory and Ribonuclease Activities. Biochem. Biophys, 276: 587-593.
  • Wang, J., Wang, H.X. ve Ng, T.B. (2007). A Peptide with HIV-1 Reverse Transcriptase Inhibitory Activity from the Medicinal Mushroom Russula paludosa. Peptides, 28(3) 560-565.
  • Zhang, M., CK Cheung, P., EC Ooi, V. ve Zhang, L. (2004). Evaluation of Sulphated Fungal Beta-Glucans from the Sclerotium of Pleurotus tuber-regium as a Potential Water-Soluble Anti-Viral Agent. Carbohydr Res, 339(13) 2297-301.
  • Zhang, M., Zhang, L., Wang, Y. ve Cheung, P.C. (2003). Chain Conformation of Sulphated Derivatives of Beta-Glucan from Sclerotia of Pleurotus tuber-regium. Carbohydr Res, 338: 2863-2870.
  • Zhu, F., Qu, L., Fan, W., Qiao, M., Hao, H. ve Wang, X. (2011). Assessment of Heavy Metals in Some Wild Edible Mushrooms Collected from Yunnan Province, China. Environ Monit Assess, 179: 191-199.
MANTAR DERGİSİ-Cover
  • ISSN: 2147-6845
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 2010
  • Yayıncı: Selçuk Üniversitesi Mantarcılık Uygulama ve Araştırma Merkezi Müdürlüğü