Doğu Afrika'da Yenilebilir Yabani Mantarların Kültüre Alınması: Araştırmadaki İlerlemeler ve Gelecekteki Beklentiler Üzerine Bir İnceleme

Mantar yetiştiriciliği, geçim kaynaklarını iyileştirme konusunda büyük potansiyele sahip, Afrika'da gelişmekte olan bir endüstridir. Bununla birlikte, sektöre hala bölgesel uyum sağlamada zorluklarla karşı karşıya kalan birkaç egzotik tür hakimdir. Ayrıca, mantarların kültüre alma durumları, karşılaştıkları zorluklar ve gelecek beklentileri ile ilgili bilgiler dağınık ve belirsizdir. Bu makalenin amacı, Doğu Afrika'da bulunan mantarların çeşitliliğini incelemek ve detaylandırmak, halihazırda kültüre alınmış olan yabani yenilebilir/tıbbi mantar türlerinin (WEM'ler), kültüre alma durumlarını, yenilebilir türlerin beslenme kompozisyon durumunu ve anaç kültürlerinin (germplazmlarının) mevcudiyetini ortaya çıkarmaktır. Bunu başarmak için, yayınlanan araştırma makaleleri, kitaplar ve Doğu Afrika raporlarının ayrıntılı bir incelemesi yapılmıştır. Veriler, yabani yenilebilir/tıbbi türlerin çeşitliliğine, besin bileşimi analizine ve kültüre alma yöntemlerine ve statüsüne odaklanan makalelerden toplanmıştır. Araştırmada 306 yabani yenilebilir/tıbbi türün gıda/ilaç olarak kullanım için arzu edilen özelliklere sahip olduğu gösterilmiştir, en yüksek sayıyı ortaya koyan Tanzanya (147) ve onu Malavi (90) takip etmektedir. Bunların arasında 82 tür, sürdürülebilir bir şekilde hasat edilir ve yönetilirse mantar endüstrisini destekleme potansiyeli yüksek, yenilebilir ektomikorizal türlerdir. Geri kalanı saprofitik mantar türleridir. Saprofitik grubundan sadece 14 türün doku kültürü yapılmış ve tohumluk misel üretimi ve yetiştirme için test edilmiştir. 51 tür besin bileşimi açısından analiz edilmiştir. Bununla birlikte, bunların hiçbiri ticari olarak kültüre alınmaya çalışılmamıştır ve anaç kültürlerin araştırılması ve çoğaltılması amacıyla mevcut durum belirsizdir. Bu çalışmadan elde edilen sonuç, Afrika'da yabani yenilebilir/tıbbi türlerin kültüre alınmasına ilişkin araştırmaların henüz başlangıç aşamasında olduğunu açıkça göstermektedir.

Domestication of Wild Edible Mushrooms in Eastern Africa: A Review of Research Advances and Future Prospects

Mushroom farming is an emerging industry in Africa with great potential to improve livelihoods. However, the industry is still dominated by a few exotic varieties faced with challenges of regional adaptability. Also, information concerning their domestication status, challenges and future prospects is scattered and unclear. The purpose of this paper was to review and detail the diversity of mushrooms occurring in Eastern Africa (EA), reveal the wild edible/medicinal species (WEMs) that have already been domesticated, their domestication status, the nutritional composition status of the edible species and availability of their germplasm (mother cultures). To achieve this, a detailed review of published research articles, books and reports from EA was conducted. Data was collected from articles focusing on the diversity of WEMs, nutritional composition analysis and domestication methods and status. From the review, 306 WEMs are shown to have desirable characteristics for utilization as food /medicine, with Tanzania documenting the highest number (147) followed by Malawi (90). Among these, 82 species are edible ectomycorrhizal species with great potential to support the mushroom industry if sustainably harvested and managed. The rest are saprophytic fungi species. Only 14 species among the saprobe group have been tissue cultured, tested for spawn production and cultivation. 51 species have been analyzed for nutritional composition. However, none of these have been commercially introduced to cultivation and the availability of their germplasm for research and propagation purpose is uncertain. The result from this study clearly shows research on the domestication of WEMS in Africa is still in its infancy stages.

___

  • Adejumo, T. a., Adejumo, T. O., & Awosanya, O. B. (2005). Proximate and mineral composition of four edible mushroom species from South Western Nigeria. African Journal of Biotechnology, 4(10).
  • Adejumo, T. O., Coker, M. E., & Akinmoladun, V. O. (2015). Identification and evaluation of nutritional status of some edible and medicinal mushrooms in Akoko Area, Ondo State, Nigeria. International Journal of Current Microbiology and Applied Sciences, 4, 1011-1028.
  • Atri, N. S., & Chadha, M. (2018). Mushrooms-some ethnomycological and sociobiological aspects. Kavaka, 51, 11-19.
  • Bandara, A. R., Karunarathna, S. C., Mortimer, P. E., Hyde, K. D., Khan, S., Kakumyan , P., & Xu, J. (2017). First successful domestication and determination of nutritional and antioxidant properties of the red ear mushroom Auricularia thailandica (Auriculariales, Basidiomycota). Mycological Progress, 16(11), 1029-1039.
  • Bandara, A. R., Mortimer, P. E., Vadthanarat, S., Xingrong, P., Karunarathna , S. C., Hyde, K. D., Xu, J. (2020). First successful domestication of a white strain of Auricularia cornea from Thailand. Studies in Fungi, 5(1), 420–434.
  • Boa, E. R. (2004). Wild edible fungi: a global overview of their use and importance to people (Cilt 17). Italy, Rome: Food & Agriculture Organization (FAO).
  • Chandrawanshi, N. K., Tandia, D. K., & Jadhav, S. K. (2017). Nutraceutical properties evaluation of Schizophyllum commune. Indian Journal of Scientific Research, 13(2), 57-62.
  • Chang, T. S., & Miles, G. P. (2004). Mushrooms: cultivation, nutritional value, medicinal effect, and environmental impact. CRC press.
  • Degreef, J., Demuynck, L., Nyirandayambaje, G., & Nzigidahera. (2016). Wild edible mushrooms, a valuable resource for food security and rural development in Burundi and Rwanda. Biotechnologie, Agronomie, Société et Environnement, 20(4), 441-452.
  • Degreef, J., Kasongo, B., Niyongabo, E., & De Kesel, A. (2020). Edible mushrooms, a vulnerable ecosystem service from African miombo woodlands. Biotechnology, Agronomy and Society and Environment , 24, 70- 80.
  • Dejene, T., Oria-de-Rueda, J. A., & Martin-Pinto, P. (2017a). Edible Wild Mushrooms Of Ethiopia: Neglected Non-Timber Forest Products. Revista Fitotecnia Mexicana, 40(4), 391-397.
  • Dejene, T., Oria-de-Rueda, J., & Martin-Pinto, P. (2017b). Wild mushrooms in Ethiopia: A review and synthesis for future perspective. Forest Systems, 26(1).
  • Ducousso, M., Duponnois, R., Thoen, D., & Prin, Y. (2012). Diversity of ectomycorrhizal fungi associated with Eucalyptus in Africa and Madagascar. International Journal of Forestry Research, 2012.
  • Fao. (2015). FAOSTAT. Food and Agriculture Organization of the United Nations. Rome, Italy.
  • FAO. (2017). The future of food and agriculture – Trends and challenges. Rome.
  • Girmay, Z., Gorems, W., & Zewdie, S. (2016). Growth and yield performance of Pleurotus ostreatus (Jacq. Fr.) Kumm (oyster mushroom) on different substrates. AMB Express, 6(1), 87.
  • Gizaw, B. (2015). Cultivation and yield performance of Pholiota nameko on different agro industrial. Academia Journal of Food Research, 3, 032-042.
  • Hsieh, H. M., & Ju, Y. M. (2018). Medicinal components in Termitomyces mushrooms. Applied microbiology and biotechnology. 102(12), 4987-4994.
  • Hussein, J. T. (2016). Successful domestication of Lentinus sajor-caju from an indigenous forest in Tanzania. Journal of Applied Biosciences, 108(1), 10507-10518.
  • Juma , I., Tibuhwa, D. D., Mshadete, A. M., & Kivaisi, A. K. (2015). Domestication of seven Tanzanian indigenous saprophytic edible mushrooms. International Research Journal of Biological Sciences, 4, 1-8.
  • Juma, I., Mshadete, A. M., Tibuhwa, D. D., & Kivaisi, A. (2016). Assessment of antioxidant potentials of the wild and domesticated saprophytic edible mushrooms from Tanzania. Current Research in Environmental and Applied Mycology, 6, 1-10.
  • Kamalebo, H. M., & De Kesel, A. (2020). Wild edible ectomycorrhizal fungi: an underutilized food resource from the rainforests of Tshopo province (Democratic Republic of the Congo). Journal of ethnobiology and ethnomedicine, 16(1), 1-13.
  • Kashiki, B. N., De, K. A., Mukala, E. K., Bostoen, K., & Degreef, J. (2021). Edible Fungi Consumed by the Lamba and Bemba People of Haut-Katanga (DR Congo). European Journal of Agriculture and Food Sciences, 3(3), 41-46.
  • Kirk, P. M., Cannon, P. F., Minter, D. W., & Stalpers, J. A. (2008). Dictionary of the fungi (10th b.). Wallingford: CABI.
  • Li , H., Tian, Y., Menolli, J. N., Ye, L., Karunarathna, S. C., Perez-Moreno, J., Kasuya, T. (2021). Reviewing the world's edible mushroom species: A new evidence‐based classification system. Comprehensive Reviews in Food Science and Food Safety, 20(2), 1982-2014.
  • Lister, C. E. (2015). Nutritional Analysis of Mushrooms - A summary.
  • Magingo, F. S., Oriyo, N. M., Kivaisi, A. K., & Danell, E. (2004). Cultivation of Oudemansiella tanzanica nom. prov. on agricultural solid wastes in Tanzania. Mycologia, 96(2), 197-204.
  • Mdachi, S. M., Nkunya , H. M., Nyigo , A. V., & Urasa, I. T. (2004). Amino acid composition of some Tanzanian wild mushrooms. Food Chemistry, 86, 179–182.
  • Mshadete, A. M., & Cuff, A. M. (2008). Cultivation of three types of indigenous wild edible mushrooms: Coprinus cinereus, Pleurotus flabellatus and Volvariella volvacea on composted sisal decortications residue in Tanzania. African Journal of Biotechnology, 7(24).
  • Muchane , M. N., Waithaka, K. M., & Terer, T. (2021). Macro-fungi Community of Lake Ol Bolossat Basin and Associated Riparian Ecosystems in Central, Kenya. International Journal of Natural Resource Ecology and Management, 6(1), 6.
  • Musieba , F., Okoth, S., Mibey , R. K., Wanjiku, S., & Moraa, K. (2012). Suitability of locally available substrates for cultivation of the Kenyan indigenous Golden oyster mushroom (Pleurotus citrinopileatus Singer). Agricultural Journal, 7(4), 240-244.
  • Mwita, L. N., Mshadete, A. M., & Lyantagaye, S. L. (2010). Improved antimicrobial activity of the Tanzanian edible mushroom Coprinus cinereus (Schaeff) Gray by chicken manure supplemented solid sisal wastes substrates.
  • Nakalembe , I., Kabasa, J. D., & Olila, D. (2015). Comparative nutrient composition of selected wild edible mushrooms from two agro-ecological zones, Uganda. SpringerPlus, 433(4), 1-15.
  • Ngom , K., Nakabonge , G., Ssekandi, J., Akowedaho, B. D., Balde, I., & Noba, K. (2022). Diversity of Basidiomycetous Macrofungi from Mpanga Forest in Mpigi District, Central Uganda. Annual Research & Review in Biology, 37(10), 24-56.
  • Niazi, A. R., & Ghafoor, A. (2021). Different ways to exploit mushrooms: A review. All life, 14(1), 450-460.
  • Njuguini, S. K., Nyawira, M. M., Wachira , P. M., Okoth , S., Muchai , S. M., & Saado, A. H. (2018). Effects of Land Use on the Diversity of Macrofungi in Kereita Forest Kikuyu Escarpment, Kenya. Current Research inAplied Environmental Mycology, 8(2), 254-281.
  • Nteziryayo, V., Tibuhwa, D. D., Kiyuku, P., Muvunyi, R., & Masharabu , T. (2019). Characterization and Domestication of Wild Edible Mushrooms from. Tanzania Journal of Science, 45(3), 417-430.
  • Okoth, S. (2013). "Proximate composition, amino acids and vitamins profile of pleurotus citrinopileatus Singer: An indigenous mushroom in Kenya. AM J Food Technol., 8, 200-2006.
  • Olila, D., Kyeyune, G., Kabasa, J. D., Kisovi, I., & Munishi, P. T. (2007). Assessment of Potential for Domestication of Termitomyces microcarpus: An indigenous Edible and Medicinal Mushroom from Lake Victoria Basin. Agricultural Journal, 2, 627-631.
  • Onyango, B. O., Palapala, V. A., Arama, P. F., Wagai, S. O., & Gichimu, B. M. (2011). Morphological characterization of Kenyan native wood ear mushroom [Auricularia auricula (L. ex Hook.) Underw.] and the effect of supplemented millet and sorghum grains in spawn production. Agriculture and Biology Journal of North America.
  • Oriyo, N. M., Magingo, F. S., & Kivaisi, A. K. (2004). Cultivation of Oudemansiella tanzanica nom. prov. on Agricultural Solid Wastes in Tanzania.
  • Otieno , D. O., Onyango , C., Matasyoh, G. L., Wanjala, W. B., Wamalwa, M., & Harvey, J. J. (2015). Genetic diversity of Kenyan native oyster mushroom (Pleurotus). Mycologia, 107(1), 32-38.
  • Pegler, D. N. (1977). A preliminary agaric flora of East Africa (Kew Bulletin Additional Series b.). London: Royal Botanic Gardens KEW.
  • Pegler, D. N., & Rayner, R. W. (1969). A contribution to the Agaric flora of Kenya. Kew Bulletin, 23(3), 347-412. Rai, M., Tidke, G., & Wasser, S. P. (2005). Therapeutic potential of mushrooms.
  • Raymond, P., Mshadete, A. M., & Kivaisi , A. K. (2013). Cultivation of Oyster Mushroom (Pleurotus HK-37) On Solid Sisal Waste Fractions Supplemented With Cow Dung Manure. Journal of Biology and Life Science, 4(1).
  • Rizal, L. M., Hyde, K. D., Chukeatirote, E. I., & Chamyuang, S. I. (2015). Proximate analysis and mineral constituents of Macrolepiota dolichaula and soils beneath its fruiting bodies. Mycosphere, 6(4), 414–420. Sande, A. (2019). Mushroom as a strategy to reduce food insecurity in Tharaka Nthi County. IOSR Journal of Humanities and Social Science, 24(1), 47-52.
  • Sathiya Seelan, J. S. (2020). New Species of Termitomyces (Lyophyllaceae, Basidiomycota) from Sabah (Northern Borneo), Malaysia. Mycobiology, 48(2), 95-103.
  • Smird, S. W., & Durall, D. M. (2004). Mycorrhizal networks: a review of their extent, function, and importance. Canadian Journal of Botany, 82(8), 1140-1165.
  • Smith, S., & Reads, D. (2008). Mycorrhizal symbiosis (3rd b.). USA: Academic press.
  • Soro, B., Vanie-Leabo, L. L., Konate, S., Bakayoko, A., & Kone, D. (2019). Phytogeographical and sociolinguistical patterns of the diversity, distribution, and uses of wild mushrooms in Côte d’Ivoire, West Africa. Journal of ethnobiology and ethnomedicin, 15(1), 1-12.
  • Teklit, G. A. (2015). Chemical Composition and Nutritional Value of the Most Widely Used Mushrooms Cultivated in Mekelle Tigray Ethiopia. Journal of Nutrition & Food Sciences, 5(5), 1-5.
  • Thawthong, A., Karunarathna, S. C., Thongklang, E., Chukeatirote, E., & Kakumyan. (2014). Discovering and domesticating wild tropical cultivatable mushrooms. Chiang Mai Journal of Science, 41(4), 731-764.
  • Tibuhwa, D. D. (2011). Diversity of macrofungi at the University of Dar es Salaam Mlimani main campus in Tanzania. International journal of Biodiversity and Conservation, 3(11), 540-550.
  • Valverde, M. E., Hernandez-Perez, T., & Paredes-Lopez, O. (2015). Edible Mushrooms: Improving Human Health and Promoting Quality Life. International Journal of Microbiology, 1-14.
  • Valverde, M. E., Hernandez-Perez, T., & Paredez-Lopez, O. (2015). Edible mushrooms: improving human health and promoting quality life. International journal of microbiology, 2015, 14.
  • Waiganjo, M. W., Ngeli, P., Gateri , M. W., & Muriuki, A. W. (2008). 2008, March. Cultivation and commercialization of edible mushrooms in Kenya: A review of prospects and challenges for smallholder production. In International Symposium on Underutilized Plants for Food Security, Nutrition, Income and Sustainable Development, 806, 473-480.
  • Wallander, H. (2006). External mycorrhizal mycelia: the importance of quantification in natural ecosystems. New Phytologist, 240-242.
  • Wendiro, D., Wacoo, A. P., & Wise, G. (2019). Identifying indigenous practices for cultivation of wild saprophytic mushrooms: responding to the need for sustainable utilization of natural resources. Journal of Ethnobiology and Ethnomedicine, 15(1), 1-15.
  • Willis, K. (2018). State of the world's fungi 2018. Report. State of the world's fungi. Report 2018.
  • Zhang, C., Han, C., Zhao, B., & Yu, H. (2012). The protective effects of aqueous extracts of wild-growing and fermented Royal Sun mushroom, Agaricus brasiliensis S. Wasser et al. (higher basidiomycetes), in CCl4-induced oxidative damage in rats. International Journal of medicinal mushrooms, 557-561.