Embriyonik Kök Hücre Belirteçleri

Embriyonik kök hücre araştırmaları, embriyonik kök hücrelerin EKH sınırsız olarak kendilerini yenileyebilme özellikleri ve farklı hücre tiplerine dönüşebilme yetenekleri plastisite sayesinde rejeneratif tıbbın en gözde konularından biri haline gelmiştir. Farklılaşmamış EKH'ler memeli pluripotent hücrelerine özel moleküler belirteçleri eksprese etme özelliğine sahiptir. EKH'lerin farklılaşmadan kendilerini yenileyebilmesi ve pluripotentlik özelliklerinin sağlanması için bu belirteçlerin uygun düzeyde olması gerekmektedir. Bu belirteçlerin ekspresyonundaki değişim embriyo gelişim safhalarının belirlenmesinde, farklı türlerdeki embriyoların tanımlanmasında ve karakterizasyonlarının ortaya çıkarılmasında etkin rol oynamaktadır. Bundan dolayı EKH belirteçlerinin görevlerinin daha iyi anlaşılması klinikteki tedavi metodlarının geliştirilmesine ve hastalık modellerinin araştırılmasına katkı sağlayacaktır. Sunulan derlemede EKH'ler, EKH belirteçleri ve bu belirteçlerin regülasyonu hakkında önemli bilgilerin özetlenmesi amaçlanmıştır.

Embryonic Stem Cell Markers

Research on embryonic stem cell has been the most popular subject of regenerative medicine because of the unlimited self-renewal ability and the convertibility to the different cell types plasticity of the embryonic stem cell ESC ‘s. Undifferentiated ESCs have a potential to express specific molecular markers specific for mammalian pluripotent cells. These molecular markers are required to be at certain adequate level to maintain pluripotency and renewal of ESCs without differentiation. The changes of the expression of these markers have crucial role on determination of embryo development stages, identification and characterization of embryos in different species. Therefore, studies related with the roles of ESCs markers will contribute to the development of new therapeutic models for clinical studies as well as to understand mechanism of the formation of diseases. The main aim of this review is to summarize breakthrough results of recent studies about ESCs, ESC markers and regulation of these markers.

___

  • Evans MJ, Kaufman MH. Establishment in cul- ture of pluripotential cells from Mouse embry- os. Nature, 1981;292:154–156.
  • Martin GR. Isolation of a pluripotent cell line from early Mouse embryo scultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA.1981;78:7634–7638.
  • Thomson Ja, Itskovitz-Eldor J, Shapiro Ss, et all. Embryonic stem cell lines derived from human blastocysts. Science.1998; 282:1145–1147.
  • Shamblott M.J, Axelman, J, Wang S, et all. Derivation of pluripotent stem cells from cul- tured human primordial germ cells. Proc. Natl. Acad. Sci. USA.1998; 95: 13726–13731.
  • Solter D, Knowles BB. Monoclonal antibody defining a stage-specific mouse embryonic an- tigen (ssea-1). Proc. Natl. Acad. Sci. USA. 1978; 75: 5565–5569.
  • Knowles BB, Aden DP, Solter D. Monoclonal antibody detecting a stage-specific embryonic antigen (ssea-1) on preimplantation mouse embryos and teratocarcinoma cells. Curr. Top. Microbiol. Immunol. 1978; 81: 51–53.
  • Shevinsky LH, Knowles BB, Damjanov I et all. Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen ex- pressed on mouse embryos and human terato- carcinoma cells. Cell. 1982; 30:697-705.
  • Kannagi R, Cochran NA, Ishigami F et all. Stage-specific embryonic antigens (SSEA-3 and -4) are epitopes of a unique globo-series gan- glioside isolated from human teratocarcinoma cells. Embo J. 1983; 2:2355-2361.
  • Solter D, Shevinsky LH, Knowles BB et all. The induction of antigenic changes in a teratocar- cinoma stem cell line (F9) by retinoic acid. Dev Biol. 1979; 70:515-521.
  • Silver LM, Martin GR, Strickland S, eds. Terato- carcinoma Stem Cells. Cold Spring Harbor, NY. Cold Spring Harbor Press. 1983; 635-646.
  • Andrews P.W,Banting G, Damjanov I, Arnaud D, Avner P. Three monoclonal antibodies defining distinct differentiation antigens associated with different high molecular weight poly- peptides on the surface of human embryonal carcinoma cells. Hybridoma. 1984; 3: 347–361.
  • Henderson J.K, Draper J.S, Baillie H.S,et all. Preimplantation human embryos and embry- onic stem cells show comparable expression of stage-specific embryonic antigens. Stem Cells. 2002; 20: 329–337.
  • Draper J.S, Pigott C, Thomson J.A, Andrews P.W. Surface antigens of human embryonic stem cells: Changes upon differentiation in culture. J. Anat. 2002; 200: 249–258.
  • Schopperle W.M, DeWolf W.C. The tra-1-60 and tra-1-81 human pluripotent stem cell markers are expressed on podocalyxin in embryonal carcinoma. Stem Cells. 2007; 25: 723–730.
  • Niwa, H. How is pluripotency determined and maintained? Development. 2007; 134: 635–646.
  • Nichols J, Zevnik B, Anastassiadis K, et all. Forma- tion of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell. 1998; 95: 379–391.
  • Mitsui K, Takuzawa Y, Itoh H, et all. The home- oprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003; 113: 631–642.
  • Avilion A, Nicolis S.K, Pevny L.H, et all Multipo- tent cell lineages in early mouse development depend on SOX2 function. Genes Dev. 2003; 17: 126–140.
  • Cavaleri F, Schöler H. Molecular Bases of Pluri- potency. Essentials of Stem Cell Biology. Lanza R (Ed.), San Diego, USA, Academic Press. 2009; 39-60.
  • Chambers I, Colby D, Robertson M, et all. Func- tional expression cloning of Nanog, a pluripo- tency sustaining factor in embryonic stem cells. Cell.2003;113(13): 643–655.
  • Wu G, Schöler HR. Role of Oct4 in the early em- bryo development. Cell RegenLond. 2014;3(1): 7.
  • NiwaH, Miyazaki J, Smith AG. Quantitative ex- pression of Oct-3/4 defines differentiation, dedi- fferentiation or self-renewal of ES cell. Nat Gen- et. 2000;24: 372–6.
  • Masui S, Nakatake Y, Toyooka Y, et all. Pluripo- tency governed by Sox2 via regulation of Oct3 ⁄ 4 expression in mouse embryonic stem cells. Nat. Cell Biol.2007;9: 625–635.
  • Adachi K, Suemori H, Yasuda Sh, Nakatsuji N, Kawase E. Role of SOX2 in maintaining pluripo- tency of human embryonic stem cells. Genes to Cells. 2010; 15: 455–469.
  • Kopp J.L, Ormsbee B.D, Desler, M. &Rizzino, A. Small increases in the level of sox2 trigger the differentiation of mouse embryonic stem cells. Stem Cells.2008; 26: 903– 911.
  • Zhao S, Nichols J, Smith A.G. & Li M. SoxB tran- scription factors specify neuroectodermal lin- eage choice in ES cells. Mol. Cell. Neurosci. 2004;27: 332–342.
  • Parisi S, Passaro F, Aloia, L, et all. Klf5 is involved in self-renewal of mouse embryonic stem cells. J. Cell Sci. 2008;121: 2629–2634.
  • Okita K, Ichisaka, T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells. Nature 2007; 448: 313–317.
  • Yu J, Vodyanik MA, Smuga-Otto K, Antosiew- icz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin, II, Thomson JA. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007; 318: 1917- 1920.
  • Maruyama M, Ichisaka T, Nakagawa M. & Yamanaka S. Differential roles for Sox15 and Sox2 in transcriptional control in mouse embry- onic stem cells. J. Biol. Chem.2005; 280: 24371– 24379 .
  • Okumura-Nakanishi N, Saito M, Niwa H, Ishika- wa F. Oct-3/4 and Sox2 Regulate Oct-3/4 Gene in Embryonic Stem Cells. The Journal Of Biological Chemistry.2005; 280: 5307–5317.