Yüzen bölge konfigürasyonu içerisindeki termokapiler konveksiyon hareketi

Son yıllarda yarı iletken malzemelerin temeli olan kristallerin kalitesinin arttırılması için ileri teknolojiler kullanılmaktadır. Bu teknolojilerden birisi de yüzen bölge (floating zone) konfigürasyonudur. Bu çalısmada, yüzen bölge konfigürasyonu içerisindeki kararlı haldeki yüzey gerilim konveksiyon hareketi ‘light-cut’ tekniği ile deneysel olarak 3 boyutlu ve numerik olarak 2 boyutlu ve iki farklı yerçekimi vektörü (mikro (μg) ve normal (1g) yerçekimi) altında arastırılmıstır. Kristalin kalitesinin arttırılması için, kristalin büyütülmesi sırasında etkili olan zararların (yerçekimi ivmesi ve doğal konveksiyon) azaltılması üzerine arastırmalar yoğunlastırılmıstır.

Thermocapillary convection flow in a floating-zone configuration

Recently high technologies are used to develop crystal quality which is the base of semi conductive materials. One of these technologies half-zone configuration. In this study, we investigated the steady state surface tension driven convection flow with ‘light-cut’ technique as an experimentally 3-D and numerically 2-D and under two difference gravity vectors. Researchers are grown to decrease harmful effects during while crystal growth for increasing crystal quality.

___

  • 1. Ostrach, S., 1977. Motion induced by capillarity. Physico-Chemical Hydrodynamics, 2, 571-589.
  • 2. Schwabe, D., Scharmann, A., Preisser, F., Oder, R., 1978. Experiments on surface tension driven flow in floating zone melting. Journal of Crystal Growth, 43, 305-312.
  • 3. Chun, C.H., Wuest, W., 1979. Experiments on transition from steady to oscillatory Marangoni convection of a floating zone under reduced gravity effect. Acta Astronautica, 6, 1073-1082.
  • 4. Napalitano, L. G., Monti, R., Russo, G., 1986. “Marangoni convection in one and two liquids floating zones. Naturwissenschaften, 73, 352-360.
  • 5. Kamotani, Y., Wang, L., Hatta, S., Selver, R., Yoda, S., 2001a. Effect of free surface heat transfer on onset of oscillatory thermocapillary flow of high Prandtl number fluid. Journal of Japan Society of Microgravity Applications, 18, 4, 283-288.
  • 6. Kamotani, Y., Wang, L., Hatta, S., Selver, R., Bhunia, P.S., Yoda, S., 2001b. Effect of old wall temperature on onset of oscillatory thermocapillary flow. 39 th AIAA Aerospace Sciences Meeting & Exhibit, 8-11 January 2001, Reno, NV.
  • 7. Kamotani, Y., Wang, L., Hatta, S., Wang, A., Yoda, S., 2003. Free surface heat loss effect on oscillatory thermocapillary flow in liquid bridges of high Prandtl number fluids. International Journal of Heat and Mass Transfer, 46, 3211-3220.
  • 8. Selver, R., 2005. Experiments on the transition from the steady to the oscillatory Marangoni convection of a floating-zone under various cold wall temperatures and various ambient air temperature effects. Microgravity Science and Technology, 17, 4, 25-35.
  • 9. Lee, J.H., 1990. An experimental study of thermocapillary convection in a cylindrical container. Case Western Reserve University, Ms. thesis, 129p, Cleveland, Ohio.
  • 10. Kamotani, Y., Lee, J.H., Ostrach, S., Pline, A., 1992. An experimental study of oscillatory thermocapillary convection in cylindrical containers. Physics of Fluids A, 4, 955-962.
  • 11. Schwabe, D., Moller, V., Schneider, J., Scharmann, A., 1992. Instabilities of shallow dynamic thermocapillary liquid layers. Physics of Fluids A, 4, 11, 2368-2381.
  • 12. Lavalley, R., Amberg, G., Alfredsson, H., 2001. Experimental and numerical investigation of nonlinear thermocapillary osicillations in a annular geometry. Europen Journal of Mechanics B – Fluids, 20, 771-797.
  • 13. Sim, B.C., 2002. Thermocapillary convection in cylindrical geometries. The State University of New Jersey, PhD thesis, 110 p, New Jersey.
  • 14. Sim, B.C., Zebib, A., 2002. Thermocapillary convection with undeformable curved surfaces in open cylinders. International Journal of Heat and Mass Transfer, 45, 4983-4994.
  • 15. Sim, B.C., Kim, W.S., Zebib, A., 2004. Axisymmetric thermocapillary convection in open cylidrical annuli with deforming interface. International Journal of Heat and Mass Transfer, 47, 5365-5373.
  • 16. Kamotani, Y., Ostrach, S., Pline, A., 1993. A thermocapillary convection experiments in microgravity. Heat Transfer in Microgravity (Avedesian, C.T., and Arpacı, V.A., eds) ASME, 289, 23-30
  • 17. Kamotani, Y., Ostrach, S., Pline, A., 1994. Analysis of velocity data taken in surface tension driven convection experiment in microgravity. Physics of Fluids, 6, 11, 3601-3609.
  • 18. Kamotani, Y., 1999. Thermocapillary flow under microgravity – Experimental results. Advanced Space Research, 24, 10, 1357-1366