Response Surface (RSM) Based Fuzzy Logic Model for the Comparison and Prediction of Surface Roughness in CNC Milling of AISI 1050 Steel Plate

Bu çalışmada AISI1050 çeliğinin CNC freze ile cep işlemesinde yüzey pürüzlülüğüne etki eden kesme hızı, ilerleme miktarı ve talaş derinliği gibi parametrelerin karar yüzey tabanlı bulanık mantık modellemesi amaçlanmıştır. İlk olarak karar yüzey tabanlı dönebilen merkezi kompozit tasarımda deney parametre seviyeleri seçilmiş deney planı oluşturulmuştur. Deney planına göre deneyler yapılmış ve bu plana bağlı olarak bulanık mantık kuralları ve her bir parametre için üyelik fonksiyonları oluşturularak modellemesi yapılmıştır. Karar yüzey tabanlı modellemede modelin ikinci derece matematik formülü çıkarılmış olup burada yapılan yüzey pürüzlülüğü tahminleri bulanık mantık tarafından yapılan tahminler ile karşılaştırılmıştır. En yüksek korelasyon katsayısı R2= 0.999 ile bulanık mantık tarafından bulunmuştur. Bu da bulanık mantığın tahmin etme gibi modellemelerde çok etkili bir yöntem olduğunu ve daha birçok prosese uygulanabileceğini göstermektedir

AISI1050 Çeliğinin CNC Freze ile İşlenmesinde Yüzey Pürüzlülüğünün Karar Yüzey Tabanlı Bulanık Mantık ile Tahmin Edilmesi

The present study is aimed for comparison and prediction of surface roughness in CNC pocket milling process of AISI1050 steel plate based on the response surface methodology (RSM) and fuzzy logic model. Firstly, the milling parameters such as cutting speed, feed rate and depth of cut are designed using the rotatable central composite design (CCD). Secondly, the quadratic mathematical model for the surface roughness, as a function of milling parameters, is obtained using the RSM. And, fuzzy rules and membership functions were constructed according to the RSM experimental design. Finally, the power and adequacy of the RSM and fuzzy logic predicted surface roughness was compared. A high correlation coefficient of R2 = 0.999 has been obtained for the fuzzy predicted results. This reveals that the fuzzy prediction is the more effective method for CNC machining process. And it can successfully be used for other machining processes

___

  • Sukumar, M.S., Venkata, P. and Nagarjuna, A., 2014, "Optimization and Prediction of Parameters in Face Milling Of Al-6061 Using Taguchi and Ann Approach", Procedia Engineering, 97, 365-371
  • Routara, B.C., Sahoo, A.K., Parida, A.K. and Padhi, P.C., 2012, "Response Surface Methodology and Genetic Algorithm Used to Optimize the Cutting Condition for Surface Roughness Parameters in CNC Turning", Procedia Engineering, 38, 1893-1904
  • Esme, U., 2015, "Surface Roughness Analysis and Optimization for the CNC Milling Process by the Desirability Function Combined with the Response Surface Methodology", Materials Testing, 57, 64-71
  • Ozcelik, B. and Bayramoglu, M., 2006, "The Statistical Modeling Of Surface Roughness in High-Speed Flat End Milling", International Journal of Machine Tools and Manufacture, 46, 1395-1402
  • Baek, D.K., Ko, T.J. and Kim, H.S., 2001, "Optimization of Feed Rate in a Face Milling Operation Using a Surface Roughness Model", International Journal of Machine Tools and Manufacture,41, 451-462
  • Peigne, G., Paris, H. and Brissaud D., 2004, "Surface Shape Prediction in High Speed Milling", International Journal of Machine Tools and Manufacture, 44, 1567-1576
  • Franco, P., Estrems, M. and Fuara, F., 2004, "Influence Of Radial and Axial Run Outs on Surface Roughness in Face Milling with Round Insert Cutting Tools", International Journal of Machine Tools and Manufacture, 44, 1555-1565
  • Kishawy, H.A., Dumitrescu, M., Ng, E.G. and Elbestawi, M.A., 2005, "Effect of Coolant Strategy on Tool Performance, Chip Morphology and Surface Quality During High-Speed Machining of A356 Aluminum Alloy", International Journal of Machine Tools and Manufacture,45, 219-227
  • Maria de Souza, A., Salesb, W.F., Santosc, S.C. and Machadod, A. R., 2005, " Performance of Single Si3N4 and mixed SiN4 CPCBN Wiper Cutting Tools Applied to High Speed Face Milling of Cast Iron", International Journal of Machine Tools and Manufacture,45, 335-344
  • Ryua, S.H., Ki, D., Chong, C. and Chu N., 2006, "Roughness and Texture Generation on End Milled Surfaces", International Journal of Machine Tools and Manufacture,46, 404-412
  • Mantle, A.L. and Aspinwall, D.K., 2001, "Surface Integrity of A High Speed Milled Gamma Titanium Aluminide", Journal of Materials Processing Technology,118, 143-150
  • Wang, M.Y. and Chang, H.Y., 2004, "Experimental Study of Surface Roughness in Slot End Milling", International Journal of Machine Tools and Manufacture,44, 51-57
  • Lou, S.J. and Chen, J.C., 1999, "In-process Surface Roughness Recognition (ISRR) System in End Milling Operations", International Journal Advanced Manufacturing Technology, 15, 200- 209
  • Gologlu, C. and Sakarya, N., 2008, "The effects of cutter Path Strategies on Surface Roughness of Pocket Milling of 1.2738 Steel Based on Taguchi Method", Journal of Materials Processing Technology, 206, 7-15
  • Benardos, P.G. and Vosniakos, G.C., 2002, "Prediction of Surface Roughness in CNC Face Milling Using Neural Networks and Taguchi's Design of Experiments", Robotics and Computer Integrated Manufacturing,18, 343-354
  • Akmal, K. Shamsuddin, A.R. and Osman, M.H., 2013, "A Comparison of Milling Cutting Path Strategies for Thin-Walled Aluminum Alloys Fabrication", International Journal of Engineering and Science, 2, 1-8
  • Ertakin, Y.M. and Kwon, T.L., 2003, "Tseng: Identification of Common Sensory Features for the Control of CNC Milling Operations Under Varying Cutting Conditions", International Journal of Machine Tools and Manufacture,43, 897-904
  • Issam, H., Abdellatif K., Francisco M.C.P., Lopez, J. N. and Jabbouri A., 2012, "Fuzzy rule based predictive model for cutting force in turning of reinforced PEEK composite", Measurement,45, 1424-1435
  • Esme, U., Kulekci, M.K., Ustun, D., Kahraman, F. and Kazancoglu, Y., 2015, "Grey-based Fuzzy Algorithm for Optimization of Ball Burnishing Process", Materials Testing, 57, 7-8
  • Zuperl, U. and Cus, F., 2016, "Surface Roughness Fuzzy Inference System within the Control simulation of End Milling", PrecisionEngineering,43, 530-543
  • Asiltürk, I. and Neseli, S., 2012, "Multi Response Optimization of CNC Turning Parameters Via Taguchi Method-Based Response Surface Analysis", Measurement, 45, 785-794
  • Aloufi, M. and Kazmierski, T.J., 2011, "A response Surface Modelling Approach to Performance Optimization of Kinetic Energy Harvesters IJRRCS Simulation", Benchmarking and Modeling of Systems and Communication Networks, 1, 1-8
  • Kathleen, M.C., Natalia, Y.K., Jeff, R., 2004, "Response Surface Methodology, Center for computational analysis of social and organizational systems (CASOS)", Technical Report
  • Myers, R.H., Douglas, C.M., Anderson-Cook, C.M., 2009, "Process and Product Optimization Using Designed Experiment", 3th, John Wiley &Sons, Inc
  • Demirel, M. and Kayan, B., 2012, "Application of Response Surface Methodology and Central Composite Design for The Optimization Of Textile Dye Degradation By Wet Air Oxidation", International Journal of Industrial Chemistry, 3, 1-10
  • Moghaddam, S.S., Alavi, M.R. Moghaddam and Arami, M., 2010, "Coagulation/Flocculation Process For Dye Removal Using Sludge From Water Treatment Plant: Optimization Through Response Surface Methodology", Journal of Hazardous Materials, 175, 651-657
  • Kayan, B. and Gözmen, B., 2012, "Degradation of Acid Red 274 using H2O2 in subcritical water: application of response surface methodology. Journal of Hazardous Materials,201, 100- 106
  • Myers, R. H., 1971, "Response Surface Methodology", Allyn and Bacon, Boston
  • Lim, C.L., Morad, N., Teng, T.T. and Norli, I., 2011, "Chemical Oxygen Demand (COD) Reduction of A Reactive Dye Wastewater Using H2O2/Pyridine/ Cu(II) System", Desalination, 278, 26-30
  • King, J., Mamdani, E.H., 1977, "The Application of Fuzzy Control Systems to Industrial Processes", Automatica, 13, 235-242
  • Sagbas, A., 2011, "Analysis and Optimization of surface Roughness in The Ball Burnishing Process Using Response Surface Methodology and Desirabilty Function", Advances in Engineering Software,42, 992-998