Nikel Alüminatların Fiziksel Metalurjisi, Uygulamaları ve İşlenmesi

Bu tarama çalışmasında, halihazırda kısıtlı olarak kullanılan ve aynı zamanda bazı kritik endüstriyel uygulamalar için düşünülen iki tür Ni alüminat, Ni3Al ve NiAl intermetaliklerinin, temel yapısal ve teknolojik özellikleri verilmektedir. Yapısal ve fiziksel özelliklerini takiben, bu intermetaliklerin teknolojik kullanımda görülen sınırlarını tarif ettikten sonra mekanik davranış açısından avantajları ve dezavantajları sunulmaktadır. Ni alüminatların üretilmesi, işlenmesi ve son olarak birleştirilmesi, bu aşamalardaki zorluklar da, detaylı bir şekilde incelenmiştir.

The Physical Metallurgy, Applications and Processing of Nickel Aluminides

In this review article, basic structural and technological properties of only two types of Ni aluminides, namely Ni3Al ve NiAl intermetallics, that are being used and considered for some critical applications are given in detail. Following their basic structural and physical properties, some limitations of these intermetallics in technological uses are described and their advantages and disadvantages in terms of mechanical performance are presented. The manufacturing, processing and finally joining and some problem during the process of joining of Ni aluminides are also investigated in detail.

___

  • 1. Westbrook, J.H. and Fleischer, 2000, R.L. (Eds), Intermetallic Compounds Volume 1-4, John Wiley & Sons
  • 2. Bradley, A. J., Taylor, A., 1937, “Electric and Magnetic Properties of B2 Structure Compounds: NiAl, CoAl” Proceedings of Royal Society, 159A, 56-72
  • 3. Foiles, S. M., Daw, M. S., 1987, “Application of the Embedded Atom Method to Ni3Al”, Journal of Mater Research, 2, 1, 5-15
  • 4. Fleischer, R. L., 1987, “High-Strength, High-Temperature Intermetallic Compounds”, Journal of Mater Science, 22, 7, 2281-2288
  • 5. Pike, L. M., Chang, Y. A., Liu, C. T., 1997, “Point Defect Concentrations and Hardening in Binary B2 Intermetallics”, Acta Materialia, 45, 3709–3719
  • 6. Makino, Y., 1998, “Application of Band Parameters to Materials Design”, ISIJ International, 38, 9, 925-934
  • 7. Guard, R. W., Westbrook, J. H., 1959, “The Alloying Behavior of Ni3Al”, Transactions of Metallurgical Society AIME, 215, 807-814
  • 8. Mishima, Y., Ochiai, S., Suzuki, T., 1993, “Lattice Parameters of Ni(γ), Ni3Al(γ') and Ni3Ga(γ') Solid Solutions with Additions of Transition and B-Subgroup Elements”, Acta Metallurgica, 33, 1161-1169
  • 9. Noguchi, O., Pya, Y, Suzuki, T., 1981, “The Effect of Nonstoichiometry on the Positive Temperature Dependence of Strength of Ni3AI and Ni3Ga”, Metallurgical Transactions A, 12, 1647-1653
  • 10. Rao, P. V. M, Murty, K. S., Suryanarayana, S. V., Naidu, S. V. N., 1992, “Effect of Ternary Additions on the Room Temperature Lattice Parameter of Ni3Al”, Physica Status Solidi, 133, 2, 231-235
  • 11. Massalski, T. H., Okamoto, H., Subramanian, P. R., 1990, “Binary Alloy Phase Diagrams” Cilt 1- 3. Materials Park, ASM International, Ohio
  • 12. Ansara, I., Dupin, N., Lukas, H. L., Sundman, B., 1997, “Thermodynamic Assessment of the Al- Ni System”, Journal of Alloys Compound, 247, 20-30
  • 13. Okamoto, H., 2004, “Al-Ni (Aluminum-Nickel)”, Jounral of Phase Equilibria and Diffusion, 25, 4, 394
  • 14. Dan, B., Georgeta, C., Angel, A., 2006, “Critical analysis of Al-Ni phase diagrams”, Metalurgia International, 11, 8, 36 – 45
  • 15. Robertson, I. M., Wayman, C. M., 1984, “Ni5Al3 and the Nickel-Aluminum Binary Phase Diagram”, Metallography, 17, 1, 43–55
  • 16. Nash, P., Singleton, M. F., Murray, J. L., 1981, “Al-Ni (Aluminum-Nickel)”, Phase Diagrams of Binary Nickel Alloys, P. Nash (Ed.), ASM International, Materials Park, Ohio
  • 17. Okamoto, H., 1993, “Al-Ni (Aluminum-Nickel)”, Journal of Phase Equilibria, 14, 2, 257-259, 18. Ma, Y., Ardell, A. J., 2003, “The (γ +γ´)/γ´ Phase Boundary in the Ni-Al Phase Diagram from 600 to 1200 °C”, Zeitschrift Fur Metallkunde, 94, 9, 972-975
  • 19. Hultgren, R. , Desai, P. D., Hawkins, D. T., Gleiser, M., Kelley, K. K., 1973, “Selected Values of Thermodynamic Properties of Binary Alloys”, Metals Park, American Society for Metals, Ohio
  • 20. Au, Y. K., Wayman, C. M., 1972, “Thermoelastic Behaviour of the Martensitic Transformation in β´Ni–Al Alloys”, Scripta Metallurgica, 6, 1209–1214
  • 21. Wright, R .N., Knibloe, J. R., 1972, “The influence of alloying on the microstructure and mechanical properties of P/M Ni3Al”, Acta Metallurgica et Materialia, 38, 10, 1993-2001
  • 22. Chen, M. W., Glynn, M. L., Ott, R. T., Hufnagel, T. C., Hemker, K .J., 2003, “Characterization and Modeling of a Martensitic Transformation in a Platinum Modified Aluminide Diffusion Bond Coat for Thermal Barrier Coatings”, Acta Materialia, 51, 14, 4279-4294
  • 23. Kao, R., Chang, Y. A., 1993, “On the Composition Dependencies of Self-Diffusion Coefficients in B2 Intermetallic Compounds”, Intermetallics, 1, 4, 237-250
  • 24. Girifalco, L. A., 1964, “Vacancy Concentration and Diffusion in Order-Disorder Alloys”, Journal Physical Chemistry of Solids, 24, 323-333
  • 25. Shankar, S., Seigle, L. L., 1978, “Interdiffusion and Intrinsic Diffusion in the NiAl(γ) Phase of the Al-Ni Phase Diagram”, Metallurgical Transactions A, 9, 1467-1476
  • 26. Cahn, R. W., 1999, “Lattice Parameter Changes on Disordering İntermetallics”, Intermetallics, 7, 10, 1089–1094,
  • 27. Chen, G., Ni,X., Nsongo, T., 2004, “Lattice Parameter Dependence on Long-Range Ordered Degree During Order–Disorder Transformation”, Intermetallics, 12, 7-9, 733–739
  • 28. Liu, H. C., Mitchell, T. E., 1983, “Irradiation Induced Order-Disorder in Ni3Al and NiAl”, Acta Metallurgica, 31, 6, 863-872
  • 29. Ko, H., Hong, K. T., Kaufmann, M. J., Lee, K.S., 2002, “The Effect of Long Range Order on the Activation Energy for Atomic Migration in NiAl Alloys: Resistivity Study”, Journal of Materials Science, 37, 9, 1915-1920
  • 30. Morinaga, M., Yukawa, N., Adachi, H., 1984, “Alloying Effect on the Electronic Structure of Ni3Al (γ')”, Journal of the Physical Society of Japan, 53, 2, 653-663
  • 31. Hackenbracht, D., Kubler, J., 1980, “Electronic Magnetic and Cohesive Properties of Some Nickel-Aluminium Compounds”, Journal of Physics F: Metal Physics, 10, 3, 427-440
  • 32. Botton, G. A., Guo, G. Y., Temmerman, W. M., Humphreys, C. J., 1996, “Experimental and Theoretical Study of the Electronic Structure of Fe, Co, and Ni Aluminides with the B2 Structure”, Physical Review B, 54, 1682–1691
  • 33. Saniz, R. Ye, L-H, Shishidou, T., Freeman, A. J., 2006, “Structural, Electronic, and Optical Properties of NiAl3: First-Principles Calculations”, Physical Review B, 74, 014209
  • 34. Kovacs, Z., Köver, L., Weightman, P., Varga, D., Sanjines, R., Palinkas, J., Margaritondo, G., Adachi, H., 1996, “Electronic Structure of Al3Ni and AlNi3 Alloys”, Physical Review B, 54, 12, 8501-8505
  • 35. Sarma, D. D., Speier, W., Zeller, R., van Leuken, E., de Groot, R. A., Fuggle, J. C., 1989, “The Electronic Structure of NiAl and NiSi”, Journal of Physics: Condensed Matter, 1, 9131-9139,
  • 36. Frank, S., Södervall, U., Herzig, C., 1995, “Self-Diffusion of Ni in Single and Polycrystals of Ni3Al; A Study of SIMS and Radiotracer Analysis”, Physica Status Solidi B, 191, 1, 45–55
  • 37. Frank, S., Södervall, U., Herzig, C., 1997, “Fast Diffusion of Boron in the Intermetallic Compound of Ni3Al”, Intermetallics, 5, 221-227
  • 38. Frank, S., Södervall, U., Herzig, C., 1996, “Grain Boundary Self-Diffusion of 63Ni in Pure and Boron-Doped Ni3Al”, Intermetallics, 4, 8, 601–611,
  • 39. Frank, S., Divinski, S., Sodervall, U., Herzig, C., 2001, “Ni Tracer Diffusion in the B2-Compound NiAl: Influence of Temperature and Composition”, Acta Materialia, 49, 8, 1399-1411
  • 40. Schaefer, H.E., Frenner, K., Würschum, R., 1999, “High-Temperature Atomic Defect Properties and Diffusion Processes in Intermetallic Compounds”, Intermetallics, 7, 3-4, 277-287
  • 41. Hu, R., Su, H-N., Nash, P., 2007, “Enthalpies of Formation and Lattice Parameters of B2 Phases in Al-Ni-X systems”, Pure Applied Chemistry, 79, 10, 1653-1673
  • 42. Schroll R., Gumbsch, P., 1998, “Atomistic Study of the Interaction Between Dislocations and Structural Point Defects in NiAl”, Physica Status Solidi A, 166, 475‐488
  • 43. Xu, Q., Van der Ven, A., 2009, “First-Principles Investigation of Migration Barriers and Point Defect Complexes in B2–NiAl”, Intermetallics, 17, 319–329
  • 44. Hao, Y. L., Yang, R., Hu, Q. M., Li, D., Song, Y., Ninomi, M., 2003, “Bonding Characteristics of Micro-Alloyed B2 NiAl in Relation to Site Occupancies and Phase Stability”, Acta Materialia, 51, 5545–5554
  • 45. Iotova, D., Kioussis, N., Lim, S. P., 1996, “Electronic Structure and Elastic Properties of the Ni3X(X=Mn, Al, Ga, Si, Ge) İntermetallics”, Physical Review B, 54, 20, 14413-14422
  • 46. Parlinski, K., Jochym, P. T., Kozubski, R., Oramus, P., 2003, “Atomic Modeling of Co, Cr, Fe Antisite Atoms and Vacancies in B2-NiAl”, Intermetallics, 11, 157-160
  • 47. Terada, Y., Ohkubo, K., Mohri, T., Suzuki, T., 1995, “Thermal Conductivity of B2-Type Aluminides and Titanides, Intermetallics, 3, 5, 347–355
  • 48. Terada, Y., Ohkubo, K., Mohri, T., Suzuki, T., 1999, “Effects of Ternary Additions on Thermal Conductivity of NiAl”, Intermetallics, 7, 6, 717–723
  • 49. Terada, Y., Ohkubo, K., Mohri, T., Suzuki, T., 2001, “Thermal Conductivity of Ni3Al with Ternary Additions”, Materials Science and Engineering A, 311, 232–235
  • 50. Terada, Y., Ohkubo, K., Mohri, T., Suzuki, T., 2002, “Thermal Conductivity of Intermetallic Compounds with Metallic Bonding”, Materials Transactions, 43, 12, 3167-3176
  • 51. Terada, Y., Ohkubo, K., Mohri, T., Suzuki, T., “Site Preference in NiAl—Determination by Thermal Conductivity Measurement”, Materials Science and Engineering A, Cilt 329–331, 468– 473, 2002
  • 52. Hong, T., Freeman, A. J., 1991, “Effect of Antiphase Boundaries on the Electronic Structure and Bonding Character of Intermetallic Systems: NiAl”, Physcial Review B, 43, 6446–6458
  • 53. Fischer, R., Frommeyer, A., Schneider, A., 2001, “Atom Probe Field Ion Microscopy Investigations on Antiphase Boundaries and Super Dislocations in NiAl Alloyed with Chromium”, Physica Status Solidi A, 186, 2, 115-121
  • 54. Fu, L., Yoo, M.H., 1992, “Deformation Behavior of B2 Type Aluminides: FeAl and NiAl”, Acta Metallurgica et Materialia, 40, 4, 703-711
  • 55. Stoloff, N. S., 1989, “Physical and Mechanical Metallurgy of Ni3Al and Its Alloys”, International Material Review, 34, 153-184
  • 56. Liu, C. T., White, C. L., Horton, J. A., 1985, “Effect of Boron on Grain Boundaries in Ni3Al”, Acta Metallurgica, 33, 213–229
  • 57. Takasugi, T., Izumi, O., Masakashi, N., 1985, ”Electronic and Structural Studies of Grain Boundary Strength and Fracture in Ll2 Ordered Alloys—II. On the Effect of Third Elements in Ni3Al Alloy”, Acta Metallurgica, 33, 7, 1259–1269
  • 58. Dey, G. K., 2003, “Physical Metallurgy of Nickel Aluminides”, Sadhana, 28, 1-2, 247–262
  • 59. Reed, R., 2006, “The Superalloys: Fundamentals and Applications”, Cambridge University Press, Cambridge,
  • 60. Kruml, T., Paidar, V., Martin, J.L., 2008, “Dislocation Density in Ni3(Al, Hf)”, Intermetallics, 8, 729-736
  • 61. Noebe R. D., Bowman R. R., Nathal M. V., 1993, “Review of the Physical and Mechanical Properties of the B2 Compound NiAl”, International Materials Review, 38, 193–232
  • 62. Yoo, M. H., Takasugi, T., Hanada, S., Izumi, O., 1990, “Slip Modes in B2-Type Intermetallic Alloys”, Materials Transactions, 31, 435-442
  • 63. Cotton, J. D., Kaufman, M. J., Noebe, R. D., 2001, “A Simplified Method for Determining the Number of Independent Slip Systems in Crystals”, Scripta Metallurgica Materialia, 25, 2395-2398
  • 64. Frommeyer, G., Rablbauer, R., 2009, “Defect Properties and Related Phenomena in Intermetallic Alloys”, MRS Symp. Conf. Proc., E.P. George, H. Inui, H.J. Mills, G. Eggeler (Eds.), Warrendale, Pennsylvania, 753, 193–207
  • 65. Liu, C. T., White, C. L., 1987, “Dynamic Embrittlement of Boron-Doped Ni3Al Alloys at 600°C”, Acta Metallurgica, 35, 3, 643–649
  • 66. Liu, C. T., Kumar, K. S., 1993, “Ordered Intermetallic Alloys Part 1: Nickel and Iron aluminides”, Journal of Metals, 38-44
  • 67. Ebrahimi, F., Hoyle, T. G., 1997, “Brittle-to-Ductile Transition in Polycrystalline NiAl”, Acta Materialia, 45, 10, 4193-4204
  • 68. Darolia, R., Walston, E. S., Noebe, R., Garg, A., Oliver, B. F., 1999, “Mechanical Properties of High Purity Single Crystal NiAl”, Intermetallics, Cilt 7, No 10, 1195-1202
  • 69. Gehling, M. G. Vehoff, H., 2002, “Computation of the Fracture Stress in Notched NiAl- Polycrystals”, Materials Science and Engineering A, 329-331, 255-261
  • 70. Kim, J. T., Gibala, R., 1991, “High Temperature Ordered Intermetallic Alloy”, IV Mater Res Soc Symp Proc, Edited by Johnson, L., Stiegler, J.O., Pope, D.P., MRS, 213, 261-266
  • 71. Field, R. D., Lahrman, D. F., Darolia, R., 1991, “Slip systems in _____001> oriented NiAl single crystals”, Acta Metallurgica et Materialia, 39, 12, 2951-2959
  • 72. Field, R. D., Lahrman, D. F., Darolia, R., 1991, “The Effect of Alloying on Slip Systems in _____001> Oriented NiAl Single Crystals”, Acta Metallurgica et Materialia, 39, 12, 2961-2969
  • 73. Kaneno, Y., Yamaguchi, T., Takasugi, T., 2005, “Hot Rolling Workability, Texture and Grain Boundary Character Distribution of B2-Type FeAl, NiAl and CoTi Intermetallic Compounds”, Journal of Materials Science, 40, 733–740
  • 74. Raabe, D., 1994, “Modelling of Texture Evolution During Rolling and Compression Deformation of Intermetallic Ni3Al and NiAl Polycrystals”, Computational Materials Science, 3, 2, 231–240
  • 75. Xie, H-X., Bo, L., Yu, T., 2001, “Molecular Dynamics Simulation of an Edge Dislocation Slipping on a Cubic Plane of Ni3Al”, Materias Science and Engineering A, 19, 065005
  • 76. Kear, B.H. and Wilsdorf, H.G.F., 1962, “Dislocation Configurations in Plastically Deformed Polycrystalline Cu3Au Alloys”, Transactions of Metallurgical Society AIME, 224, 382-387
  • 77. Bonneville, J., Coupeau C., 2008, “Quantitative Atomic Force Microscopy Analysis of Slip Traces in Ni3Al Yield Stress Anomaly”, Materials Science and Engineering A, 483–484, 87-90
  • 78. Rao, S.I., Dimiduk, D.M., Parthasarathy, T.A., Uchic, M.D., Woodward, C., 2012, “Atomistic Simulations of Intersection Cross-Slip Nucleation in L12 Ni3Al”, Scripta Materialia, 66, 6, 410– 413
  • 79. Nagpal, P., Baker, I., 1990, “Effect of Cooling Rate on Hardness of FeAl and NiAl”, Metallurgical Transactions A, 21, 2281-2282
  • 80. Westbrook, J., 1956, “Temperature Dependence of Hardness of the Equi‐Atomic Iron Group Aluminides”, Journal Electrochemical Society, 103, 1, 54-63
  • 81. Kogachi, M., Minamigawa, S., Nakahigashi, K., 1992, “Determination of Long Range Order and Vacancy Content in the NiAl β′-Phase Alloys by X-Ray Diffractometry”, Acta Metallurgica et Materialia, 40, 1113-1120
  • 82. Jin, J-H., Stephenson, D.H., 1998, “Sliding Wear Behaviour of Reactively Hot Pressed Nickel Aluminides”, Wear, 217, 200-207
  • 83. Davis, J. R. (Ed.), 1997, “Heat-Resistant Materials”, ASM International
  • 84. Singleton, M. F., Murray, J. L., Nash, P., 1986, “Al–Ni”, Binary alloy phase diagrams, T B Massalski (Ed), Metals Park, American Society of Metals, Ohio
  • 85. Matsuura, K., Koyanagi, T., Kudoh, M., Oh, J-H., Kirihara, S., Miyamoto, Y., 2002, “Padding, Welding and Freeform Fabrication of Nickel Aluminide Intermetallic Compound by Reactive Rapid Prototyping Process”, Materials Transactions, 43, 5, 1146-1152
  • 86. Williams, R. K., Graves, R. S., Weaver, F. J., McElroy, D. L., 1984, “Physical Properties of Ni3Al Containing 24 and 25 Atomic Percent Aluminum”, MRS Proceedings, 39, 505-152
  • 87. Fu, H., Li, X. F., Liu, W. F., Ma, Y., Gao, T., Hong, X., 2011, “Electronic and Dynamical Properties of NiAl Studied from First Principles”, Intermetallics, 19, 1959-1967
  • 88. Sasakura, H., Suzuki, K. Masuda, Y., 1984, “Curie Temperature in Itinerant Electron Ferromagnetic Ni3Al System”, Journal of Physical Society of Japan, 53, 754-759
  • 89. de Boer, F. R., Schinkel, C. J., Biesterbos, J., Proost, S., Ning, B., Weaver, M. L., 1969, “Exchange‐Enhanced Paramagnetism and Weak Ferromagnetism in the Ni3Al and Ni3Ga Phases: Giant Moment Inducement in Fe‐Doped Ni3Ga”, Journal of Applied Physics, 40, 1049-1055
  • 90. Buis, N., Franse, J. J. M., Van Haarst, J., Kaandorp, J. P. J., Weesing, T., 1976, “Pressure Dependence of the Curie Temperature of Some Ni3Al Compounds”, Physical Letters A, 56, 2, 115–116
  • 91. Buis, N., Franse, J. J. M., Brommer, P. E., 1981, “The Magnetic Properties of Ni3Al Under High Pressures”, Physica B+C, 106, 1, 1–8
  • 92. Manga, V. R., Saal, J. E., Wang, Y., Crespi, V. H., Liu, Z-K., 2010, “Magnetic Perturbation and Associated Energies of the Antiphase Boundaries in Ordered Ni3Al”, Journal Applied Physics, 108, 103509
  • 93. Lazar, P., Podloucky, R., 2009, “Ductility and Magnetism: An Ab-Initio Study of NiAl–Fe and NiAl–Mn Alloys”, Intermetallics, 17, 675–679
  • 94. Pease, D. M., Azaroff, L. V., Vaccaro, C.K., Hines, W. A., 1979, “Electronic Structure of Ferromagnetic Ni Al Alloys”, Physical Review B, 19, 3, 1576-1581
  • 95. Oliker, V. E. Eliseeva, E. N., Gridasova, T. Y., Timofeeva, I. I. Kotko, A. V., 2010, “Effect of Magnetic Treatment on the Microstructure of NiAl–Re Alloy”, Powder Metallurgy and Metal Ceramics, 49, 3-4
  • 96. Zhou, J., Guo, J. T., 2003, “Effect of Ag Alloying on Microstructure, Mechanical and Electrical Properties of NiAl Intermetallic Compound”, Materials Science and Engineering A, 339, 166-174
  • 97. Baker, I., 1995, “A Review of the Mechanical Properties of B2 Compounds”, Materials Science and Engineering A, 192/193, 1-13
  • 98. Suzuki, T., Mishima, Y., Majura, S., 1989, “Plastic Behaviour in Ni3(Al, X) Single Crystal– Temperature, Strain-Rate, Orientation and Composition”, ISIJ International, 29, 1, 1-23
  • 99. Deevi, S. C., Sikka, V. K., Liu, C. T., 1997, “Processing, properties, and applications of nickel and iron aluminides”, Progressive Materials Science, 42, 1–4, 177-192
  • 100.Nagpal, P., Baker, I., Liu, F., Munroe, P. R., 1991, “Room Temperature Strength and Fracture of FeAl and NiAl”, Materials Research Society Symposium Proceedings, 213,533-358
  • 101.Wellner, P., Dehm, G., Kraft, O., Arzt, E., 2004, “Size Effects in the Plastic Deformation of NiAl Thin Films”, Zeitschrift Fur Metallkunde, 95, 9, 769-778
  • 102. Liu, C. T., 1988, “High Temperature Ordered Intermetallic Alloys”, MRS Symp Proc, 122, 429- 438 103. Liu, C. T., 1988, (Martin Marietta Energy Systems), “High Temperature Fabricable Nickel –Iron Aluminides”, US Patenti, 4,722,828, February 2
  • 104. Liu, C. T., Stringer, J., Mundy, J. N., L. L. Horton, L. L., Angelini, P., 1997, “Ordered Intermetallic Alloys: An Assessment”, Intermetallics, 5, 579-596
  • 105. Hofmann, M., Birringer, R., 1996, “Elastic and Plastic Behavior of Submicrometere Sized Polycrystalline NiAl”, Acta Materialia, 44, 7, 2729-2736
  • 106. Black, R., Carolan, R., Li, C-Y., Sikka, V. K., Liu, C.T., 1987, “Load Relaxation Studies of Grain Boundary Effects in two Ni3Al Alloys at Elevated Temperatures”, Scripta Metallurgica, 21, 12, 1675–1680
  • 107. Wright, R. N., Sikka, V. K., 1988, “Elevated Temperature Tensile Properties of Powder Metallurgy Ni3Al Alloyed with Chromium and Zirconium”, Journal of Materials Science, 23, 12, 4315-4318
  • 108. Lu, Y., Kim, H. C., Lee, J. H., Oh, M. H., Wee, D. M., Hirano, T., 2006, “Relationship Between Microstructure and Tensile Strength in the Directionally Solidified (23-27) at. % Al-Ni alloys”, Materials Science Forum, 510-511, 458-461
  • 109. Stoloff, N. S., Sikka, V.K., 2011, “Physical Metallurgy and Processing of Intermetallic Compounds”, (Eds). N. S. Stoloff and V. K. Sikka, Chapman & Hall, London
  • 110. Hsiung, L. M., Stoloff, N. S., 1990, “Point Defect Model for Fatigue Crack İnitiation in Ni3Al+B single Crystals”, Acta Metall Mater, 38, 6, 1191-1200
  • 111. Xu, Y., Kameoka, S., Kishida, K., Demura, M., Tsai, A-P, Hirano, T., 2004, “Catalytic Properties of Ni3Al Intermetallics for Methanol Decomposition”, Materials Transactions, 45, 11, 3177-3179
  • 112. Liu, C. T., 1986, “Development of Nickel and Nickel-Iron Aluminides for Elevated-Temperature Structural Use”, MiCon 86: Optimization of Processing, Properties, and Service Performance Through Microstructural Control, Editors (B.L. Bramfitt; R.C. Benn; C.R. Brinkman; G.F. Vander Vort), 222-237,
  • 113. Aoki, K., Izumi, O., 1979, “Improvement in Room Temperature Ductility of the L12 Type Intermetallic Compound Ni3Al by Boron Addition”, The Japan Institute of Metals, 43, 1190-1196
  • 114. Sikka, V. K. Deevi, S. C., Viswanathan, S., Swindeman, R. W., Santella, M. L., 2000, “Advances in Processing of Ni3Al-Based İntermetallics and Applications”, Intermetallics, 8, 1329-1337
  • 115. Izumi, T., Gleeson, B., 2007, “Oxidation Resistance of Pt Containing Ni+Ni3Al Alloys”, The Japan Institute of Metals, 71, 1, 34-40
  • 116. Schramm, B., Auer, W., 1996, “Sulfidation Behaviour of Nickel Aluminides”, Materials and Corrorion, 47, 12, 678-684
  • 117. Klöwer, J., Brill, U., Heubner, U., 1999, “High Temperature Corrosion Behaviour of Nickel Aluminides: Effects of Chromium and Zirconium”, Intermetallics, 7, 1183-1194
  • 118. Godlewska, E., 1997, “High Temperature Corrosion of β-NiAl Intermetallic Compound and Pseudobinary NiAl-Cr Alloys in Sulphur-Containing Atmospheres” Materials and Corrosion, 48, 687–699
  • 119. Hindam, H., Whittle, D. P., 1983, “High Temperature Internal Oxidation Behaviour of Dilute Ni- Al Alloys”, Journal of Materials Science, 18, 5, 1389-1404
  • 120. Vossen, J. P., Janssen, A. H. H., de Wit, J. H. W., 1996, “The Corrosion Behaviour of NiAl in Molten Carbonate at 650°C”, Materials and Corrosion, 47,703-708
  • 121. Deevi, S., Sikka, V. K., 1997, “ExoMelt Process for Melting and Casting of Intermetallics”, Intermetallics, 5, 17-27
  • 122. Gleeson, B., Wang, W., Hayashi, S., Sordelet, D., 2004, “Effects of Platinum on the Interdiffusion and Oxidation Behavior of NiAI-Based Alloys”, Materials Science Forum, 461- 464, 213-222
  • 123. Stoloff, N.S., Liu, C.T., Deevi, S.C., 2000, “Emerging Applications of Intermetallics”, Intermetallics, 8, 9–11, 1313–1320
  • 124. Kinsey, H. V., Stewart, M. T., 1951, “Nickel Aluminium-Molybdenum Alloys for Service at Elevated Temperatures”, Transactions American Society of Metals, 43, 193-219
  • 125. Maxwell, W. A., Grala, P. F., 1954, “Investigation of Nickel Aluminium Alloys Containing From 14 to 34 Percent Aluminium”, NASA Technical Note, 3259
  • 126. Sikka, V. K., Deevi, S. C., Vought, J. D., 1995, “Exo-Melt: A Commercially Viable Process”, Advanced Materials Proceedings, 147, 6, 29-31
  • 127. Deevi, S. C., Sikka, V. K., Swindeman, C. J., Seals, R. D., 1997, “Reactive Spraying of Nickel Aluminide Coatings”, Jounral of Thermal Spray Technology, 6, 3, 335-344
  • 128. Matsuura, K., Khan, T. I., Ohmi, T., Kudoh, M., 2001, “Reactive Casting of B2-Ordered Ni-Al- Co Ternary Intermetallic Alloys”, Materials Transactions, 42, 2, 263-268
  • 129. Parameswaran, V. R., “High-Temperature Aluminides and Intermetallics”, International Journal of Minerals, Metallurgy and Materials, 41–43, 1992
  • 130. Matsuura, K., Kitamura, T., Kudoh, M., Itoh, Y., 1996, “Changes in Microstructure and Mechanical Properties During Solid Sintering of Ni-Al Mixed Powder Compact”, Materials Transactions, 37, 5, 1067-1072
  • 131. Cardellini, F., Mazzone, G., Montone, A., Antisari, M. V., 1994, “Solid State Reactions Between Ni and Al Powders Induced by Plastic Deformation”, Acta Metallurgica et Materialia, 42, 7, 2445-2451
  • 132. Thadhani, N. N., Work, S., Graham, R. A., Hammetter, W. F., 1992, “Shock-Induced Reaction Synthesis (SRS) of Nickel Aluminides”, Journal of Materials Research, 7, 5, 1063-1075
  • 133. Coreno-Alonso, O., Cabañas-Moreno, J.G., Cruz-Rivera, J.J., Florez-Díaz, G., De Ita, A., Quintana-Molina, S., Falcony, C., 2000, “Al-Ni Intermetallics Produced by Spontaneous Reaction During Milling”, Journal of Metastable and Nano Materials, 290-295
  • 134. Karimbeigi, A., Zakeri, A., Aboutalebi, M. R., Sharifi, P., 2012, “Study on Microwave Synthesis and Characterisation of Bulk Nickel Aluminides”, Materials Science and Technology, 28, 1, 86- 91
  • 135. Alman, D. E., Stoloff, N. S., 1991, “Fabrication and Mechanical Properties of Powder Injection Molded Intermetallic Matrix Composites”, Proc. of the American Society for Composites, Technical Conference, Albany, NY, U.S.A., 390–399
  • 136. Pabi, S.K., Murty, B.S., 1996, “Mechanism of Mechanical Alloying in NiAl and CuZn Systems”, Materials Science Engineering A, 214, 1–2, 146–152
  • 137. Ying, D. Y., Zhang, D. L., 2001, “Effect of High Energy Ball Milling on Solid State Reactions in Al–25 at.-%Ni Powders”, Materials Science and Technology, 17, 7, 815-822
  • 138. Kubaski, E.T., Cintho, O.M., Antoniassi, J.L., Kahn, H., Capocchi, J.D.T., 2012, “Obtaining NiAl Intermetallic Compound Using Different Milling Devices”, Advanced Powder Technology, 23, 5, 667–672
  • 139. Ivanov, E. , Grigorieva, T., Golubkova, G., Boldyrev, V., Fasman, A.B., Mikhailenko, S.D., Kalinina, O.T., 1988, “Synthesis of Nickel Aluminides by Mechanical Alloying”, Materials Letters, 7, 51–54
  • 140. German, R. M., Bose, A., Sims, D., 1988, “Production of Reaction Sintered Nickel Aluminide Material”, US Patenti, 4,762,558, August 9
  • 141. McCoy, K. P., Shaw, K. G. Trogolo, J. A., 1992, “Analysis of Residual Phases in Nickel Aluminide Powders Produced by Reaction Synthesis”, MRS Fall Meeting-Symposium L – High- Temperature Ordered Intermetallic Alloys V , 288, 909-914
  • 142. David, S. A., Horton, J. A., Jemian, W. A., Liu, C. T., 1985, “Welding and Weldability of Nickel-Iron Aluminides”, Welding Journal, 64, 1, 22S - 28S
  • 143. Molian, P. A., Yang, Y. M., Srivatsan T. S., 1992, “Laser Welding Behaviour of Cast Ni3Al Intermetallic alloy”, Journal of Materials Science, 27, 7, 1857-1868
  • 144. Torun, O., Celikyurek, I., 2008, “Diffusion Bonding of Nickel Aluminide Ni75Al25 Using a Pure Nickel Interlayer”, Intermetallics, 16, 406-409
  • 145. Torun, O., Celikyurek, I., 2009, “Microstructure and Strength of Diffusion-Bonded Joint Between Nickel Aluminide Ni75Al25 and AISI 316 L Stainless Steel Using a Nickel Interlayer”, Kovove Materialy, 47, 4, 263-267
  • 146. Torun, O., 2009, “Microstructure and Bond Strength of Diffusion-Bonded Nickel Aluminide– Titanium Joints”, Intermetallics, 17, 179–181
  • 147. Kim, H., Hojo, J., Lee, S. W., 2007, “In-Situ Joining of Combustion Synthesized Ni3Al Intermetallic Compounds with AZ91D Mg Alloy”, Materials Science Forum, 544–545, 383-386
  • 148. Qin, L., Hu, J., Cui, C., Wang, H., Guo, Z., 2009, “Reaction Sintering and Joining Nickel Aluminide to AISI 316 Stainless Steel by Self-Propagating High Temperature Synthesis”, Materials Science and Technology, 25, 11, 1364-1368
  • 149. Kimata, T., Uenishi, K., Ikenaga, A., Kobayashi, K. F., 2004, “Dissimilar Joining of Nickel Aluminide with Spheroidal Graphite Cast Iron and Cu Alloy by Hot Pressing”, Science and Technology of Advanced Materials, Cilt 5, 251–254
  • 150. Santella, M. L. Horton, J. A., David, S. A., 1988, “Welding Behavior and Microstructure of a Ni3Al Alloy”, Weld J, Cilt 67, 63s-69s
  • 151. Santella, M. L., David, S. A., Horton, J. A., White, C. L., Liu, C. T., 1985, “Welding Studies of Nickel Aluminide and Nickel-Iron Aluminides”, Oak Ridge National Lab, Technical Report, No: ORNL-6194
  • 152. Li, H., Jones, R. H., 1995, “Effect of Pre-Welding Heat Treatments on Welding a Two-Phase Ni3Al Alloy”, Materials Science and Engineering A, 192–193, 2, 563–569