Biomimetik yöntemle hidroksiapatit (HAP) kaplama

Biomimetik yöntemle hidroksiapatit (HAP) kaplama en gelecek vaat eden tekniklerden birisidir. Bu çalışmada, üç farklı ön yüzey işlemi $(HNO _{3,}$ anodik polarizasyon, 5 N NaOH-1 N HCl (BA)) altlıkların (Ti ve Ti6Al4V) yüzey pürüzlülüğünü arttırmak için kullanılmıştır. Biomimetik apatit katmanlarının morfoloji, bileşim ve yapısı SEM, EDX ve FT-IR teknikleri ile incelenmiştir. 3xSBF’de 35 günlük daldırma sonrası yüzeyin tamamı apatit kaplama ile kaplanmıştır. SEM-EDX sonuçları kemikte bulunan tercihli yönlenme ve benzer bileşimin iyon bileşimi ve çözeltinin derişimine bağlı olarak biomimetik olarak sentezlendiğini göstermiştir. Kemik benzeri apatit katmanı sentezi, implantların biyoaktif yüzeylerini geliştirmek için bu biomimetik yöntemin etkin bir yol olduğunu göstermiştir. FT-IR analizi karakteristik HA absorpsiyon bantlarının sinterlenmiş yüzeyde oluştuğunu göstermiştir.

Hydroxyapatite (HAP) coating with biomimetic method

One of the most promising techniques to deposit hydroxyapatite (HAP) coating is the biomimetic method. In this paper, different pretreatments $(HNO _{3,}$ anodic polarization, 5 N NaOH-1 N HCl (BA)) were used to increase surface roughness of the substrates (Ti ve Ti6Al4V). The morphology, composition and structure of the biomimetic apatite layers were investigated with SEM,EDX and FT-IR techniques. The entire surface after immersed for 35 days in 3xSBF was covered by an apatite coating. The SEM-EDX results show that apatite layers with preferred orientation and composition similar to that found in bone can be biomimetically synthesized depending on the ion composition and concentration of the solution. It was shown that this biomimetic synthesis of a bone-like apatite layer may be an effective way to produce bioactive surfaces of implants. FT-IR analysis shows that characteristic HA absorption bands have occurred the sintered surface.

___

  • 1. Lin, C.M., Yen, S.K., 2006, “Biomimetic growth of apatite on electrolytic TiO2 coatings in simulated body fluid”, Materials Science and Engineering C, 26, 54 – 64
  • 2. Bigi, A., Boanini, E., Bracci, Facchini, A., Panzavolta, S., Segatti, F., Sturb, L., 2005, “Nanocrystalline hydroxyapatite coatings on titanium:a new fast biomimetic method” Biomaterials, 26, 4085–4089
  • 3. Wei, D, Zhou, Y., 2009, “Preparation, biomimetic apatite induction and osteoblast proliferation test of TiO2-based coatings containing P with a graded structure”, Ceramics International, 35 2343–2350
  • 4. Bharati, S., Sinha, M K, Basu, D, 2005, “ Hydroxyapatite coating by biomimetic method on titanium alloy using concentrated SBF”, Bull. Mater. Sci., 28 (6), 617–621
  • 5. Lee,Y.P., Wang, C.K., Huang,T.S., Chen, C.C., Kao, C.T., Ding,S.J., 2005, “In vitro characterization of postheat-treated plasma-sprayed hydroxyapatite coatings” Surface & Coatings Technology, 197 367– 374
  • 6. Barriere, F., Layrolle, P, Van Blitterswijk, C.A., De Groot, K., 1999, “Biomimetic Calcium Phosphate Coatings on Ti6Al4V: A Crystal Growth Study of Octacalcium Phosphate and Inhibition by Mg2+ and HCO3 2-“, Bone, 25 (2), 107–111
  • 7. Jianmin Shi, Chuanxian Ding, Yihu Wu, 2001, “Biomimetic apatite layers on plasma-sprayed titanium coatings after surface modification”, Surface and Coatings Technology, 137, 97-103
  • 8. Xiong Lu, Zhanfeng Zhao, Yang Leng, 2007, “Biomimetic calcium phosphate coatings on nitric-acidtreated titanium surfaces”, Materials Science and Engineering, C 27, 700–708
  • 9. Forsgren, J., Svahn, F., Jarmar, T., Engqvist, H., 2007, “Formation and adhesion of biomimetic hydroxyapatite deposited on titanium substrates”, Acta Biomaterialia, 3, 980-984
  • 10. Xiao, X.F., Tian, T., Liu, R.F., She, H., 2007, “Influence of titania nanotube arrays on biomimetic deposition apatite on titanium by alkali treatment”, Materials Chemistry and Physics, 106, 27–32
  • 11. Lluch, A. V., Ferrer, G.G., Pradas, M. M., 2009, “Surface modification of P(EMA-co-HEA)/SiO2 nanohybrids for faster hydroxyapatite deposition in simulated body fluid”, Colloids and Surfaces B: Biointerfaces, 70, 218–225
  • 12. Bracci, B., Torricelli, P., Panzavolta, S., Boanini, E., Giardino, R., Bigi, A., 2009, ” Effect of Mg2+, Sr2+, and Mn2+ on the chemico-physical and in vitro biological properties of calcium phosphate biomimetic coatings”, Journal of Inorganic Biochemistry, 103, 1666–1674
  • 13. Büyüksağiş, A.,Çiftçi, N., 2009,“The ınvestigatıon of corrosion behaviours of HAP coatings produced by sol-gel method by electrochemical method”,8. International Electrochemistry Meeting,8-12 October 2009, Antalya/TURKEY,Poster presentation, p:89
  • 14. Büyüksağiş, A.,Çiftçi, N., Ergün, Y., Kayalı, Y., 2009, “The producing of hydroxyapatite (HAP) coatings on 316 LSS and Ti implant materials by sol-gel method and the examinatıon of corrosion behaviours by electrochemical method” ,8. International Electrochemistry Meeting,8-12 October 2009, Antalya/TURKEY, Poster presentation, p:88
  • 15. Lenka Jonasova, Frank A. M. Ullera, Ales Helebrant, Jakub Strnad, Peter Greil, Biomimetic apatite formation on chemically treated titanium, Biomaterials 25 (2004) 1187–1194
  • 16. Khor, K.A., Li, H., Cheang, P., Boey, S.Y., 2002, “In vitro behavior of HVOF sprayedcalcium phosphate splats and coatings”, Biomaterials, 23, 3749–3756
  • 17. Saiz, E., Goldman, M., Gomez-Vega, J.M., Tomsia, A.P., Marshall, G.W., Marshall, S.J., 2002, “In vitro behavior of silicate glass coatings on Ti6Al4V”, Biomaterials, 23 , 3749–3756
  • 18. Ning, C.Q., Zhou, Y., 2002,”In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method”, Biomaterials, 23, 2909–2915
  • 19. Kannan, S., Balamurugan, A., Rajeswari, S., 2004, "H2SO4 as a passivating medium on the localised corrosion resistance of surgical 316L SS metallic implant and its effect on hydroxyapatite coatings", Electrochimica Acta, 49, 2395-2403
  • 20.Krupa, D., Baszkiewicz, J., Sobczak, J.W., Bilinski, A., Barcz, A.2003 "Modifying the properties of titanium surface with the aim of improving its bioactivity and corrosion resistance" , Journal of Materials Processing Technology, 144, 158-163
  • 21.Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Faure, J., Rajeswari, S., 2007, "Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic solgel coatings on surgical grade 316L SS for biomedical applications", Ceramics İnternational, 33, 605- 614
  • 22. Ding, S.J.,Huang, T.H., Kao, C.T., 2003, “Immersion behavior of plasma-sprayed modified hydroxyapatite coatings after heat treatment”, Surface and Coatings Technology,165, 248–257
  • 23. Tas, C., 2000 "Combustion synthesis of calcium phosphate bioceramic powders" , Journal of the European Ceramic Society , 20,2389-2394.
  • 24. Rigo, E.C.S., Boschi, A.O., Yoshimoto, M., Allegrini Jr., S., Konig Jr., B., Carbonari, M.J., 2004“Evaluation in vitro and in vivo of biomimetic ,hydroxyapatite coated on titanium dental implants”, Materials Science and Engineering C, 24, 647–651
  • 25.Jalota, S., Bhaduri, S. B. and Tas, C., 2007, “Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds” Materials Science and Engineering: C, 27(3), 432-440
  • 26. Sánchez-Salcedo, S., Balas, F., Izquierdo-Barba, I., Vallet-Regí, M., 2009, “In vitro structural changes in porous HA/β-TCP scaffolds in simulated body fluid“,Acta Biomaterialia, 5(7), 2738-2751
  • 27. Kokubo, T., Matsushita, T., Takadama, H., Kizuki, T., 2009, “Development of bioactive materials based on surface chemistry”, Journal of the European Ceramic Society 29, 1267–1274
  • 28. Oliveira, A.L., Costa, S.A., Sousa, R.A., Reis, R.L., 2009, “Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: Effect of static and dynamic coating conditions”, Acta Biomaterialia, 5(5), 1626-1638
  • 29. Li, F., Feng, Q. L., Cui, F. Z., Li, H. D., Schubert, H., 2002, “A simple biomimetic method for calcium phosphate coat”, Surface and Coatings Technology, 154(1), 88-93
  • 30. Xiong Lu, Zhanfeng Zhao, Yang Leng, 2007, “Biomimetic calcium phosphate coatings on nitric-acidtreated titanium surfaces”, Materials Science and Engineering]
  • 31. Faure, J., Balamurugan, A., Benhayoune, H., Torres, P., Balossier, G., Ferreira, J.M.F., 2009, “Morphological and chemical characterisation of biomimetic bone like apatite formation on alkali treated Ti6Al4V titanium alloy”, Materials Science and Engineering C, 29, 1252–1257
  • 32. Bogdanoviciene, I., Beganskiene, A., Tonsuaadu, K., Glaser, J., Jürgen Meyer, H., Kareiva, A.,2006, “Calcium hydroxyapatite, Ca10(PO4)6(OH)2 ceramics prepared by aqueous sol–gel processing”, Materials Research Bulletin, 41, 1754–1762
  • 33. Balamurugan, A., Balossier, G., Kannan, S., Michel, J., Faure, J., Rajeswari, S., 2007, “Electrochemical and structural characterisation of zirconia reinforced hydroxyapatite bioceramic sol–gel coatings on surgical grade 316L SS for biomedical applications”, Ceramics International, 33, 605–614
  • 34. Cheng, X., Filiaggi, M., Roscoe,S.G., 2004, “Electrochemically assisted co-precipitation of protein with calcium phosphate coatings on titanium alloy”, Biomaterials, 25, 5395–5403
  • 35. Stoch, A., Brozek, A., Błazewicz, S., Jastrzebski, W., Stoch, J., Adamczyk, A., Roj, I., 2003, “FTIR study of electrochemically deposited hydroxyapatite coatings on carbon materials”, Journal of Molecular Structure, 651–653, 389–396
  • 36. Narayanan, R., Dutta, S., Seshadri, S.K., 2006, “Hydroxy apatite coatings on Ti-6Al-4V from seashell”, Surface & Coatings Technology ,200 , 4720 – 4730