Al matrisli $B_4C$ takviyeli kompozitlerin sıcak presleme yöntemiyle üretimi

Bu çalışmada; gaz atomizasyon yöntemiyle üretilmiş %99 saflıktaki Al tozunu matris, %99 saflığa sahip $B_4C$ tozunu ise takviye elemanı olarak kullanıp, ağırlıkça farklı oranlara sahip metal matrisli kompozit malzemeler üretilmiştir. Takviye elemanı olan $B_4C$ tozu ağırlıkça %10, 20 ve 30 oranındadır. Kompozitlerin üretimi farklı ve basit bir üretim yöntemi olan toz metalurjisi yöntemi kullanılarak yapılmıştır. Kompozitler soğuk izostatik preslemeden sonra sıcak presleme yöntemiyle porozite minimuma indirgendi. Sıcak presleme işlemi esnasında çalışma sıcaklığı olarak 500 ve $550^ {0}C$ seçildi. Üretilen kompozitlerin metalografik incelemeleri SEM’de yapıldı. Ayrıca üretilen kompozitlerin mikrosertlik sonuçları alınıp değerlendirildi. Bu çalışma sonucunda; Al matrisli $B_4C$ takviyeli kompozitin homojen bir dağılım göstererek üretilebildiği ve ağırlık oranlarına paralel olarak mikrosertliklerde değişim olduğu izlenmiştir.

Produced by hot pressing method of composites made with Al matrix $B_4C$ reinforcement

In this study; Metal Matrix Composite materials which has different weight proportions, have been produced, %99 pure Al powder (being matrix) produced with gas atomization method %99 pure $B_4C$ powder (being reinforcement). $B_4C$ powder in weight propertion of 10, 20 and 30 %. Composite materials have been produced by powder metallurgy. First, cold isostatic pressing and then hot pressing were applied to minimise the porosity. Working temperatures were selected as 500 and $550^ {0}C$ during the hot pressing. Composite materials was examined by SEM and microhardness tests. As a result, composite materials have been produced with homogenous Al matrix and $B_4C$ reinforcement. This condition were observed weight proportion parellel with microhardness test results..

___

  • 1. Ray, Y., Kannikeswaran K., 1989, “Intel-facial Reaction Kinetics of Al/SiC Composite During Casting, Interfaces in Metal-Ceramic Composites”, The Minerals, Metals & Materials Society, pp:153-164.
  • 2. Taya, M., Arsenault R.J., 1987, “A Comparison Between a Shear Lag Type Model and an Eshelby Type Model in Predicting the Mechanical Properties of a Short Fiber Composite”, Scripta Metallurgica, Volume:21, Issue:3, Pages:349-354.
  • 3. Poudens, A., Bacroix, B., Bretheau, T., 1995, “Influence of Microstructures and Particle Concentrations on the Development of Extrusion Textures in Metal Matrix Composites”, Materials Science and Engineering A, Volume:196, Issues:1-2, Pages:219-228.
  • 4. Jiang, J., Collado, C., Keeley, D., Dodd B., 1995, “Room Temperature Formability of Particle-Reinforced Metal Matrix Composites: Forging, Extrusion and Deep Drawing Composites”, Volume:26, Issue:11, Pages:785-789.
  • 5. Ekşi, A.K., Bircan, D.A., 2006, “Mechanical Properties of Cold and Warm Compacted Aluminum Alloys (Al7XXX)” Proceedings of 11th International Materials Symposium, Denizli/Turkiye.
  • 6. Sonsino, C.M., Schlieper, G., Huppmann, W.J., 1984, “Influence of Homogeneity on The Fatigue Properties of Sintered Steels”, Int. Journal Powder Metallurgy, Vol:20, No:1, pp:45-50.
  • 7. Akgün, S., Şahin, S., 2006, “Influence of age Hardening on Mechanical Properties at SiC/AA7075 Composites Produced by P/M” Proceedings of 11th International Materials Symposium, Denizli/Turkiye
  • 8. Mindiva, H., Baydogan, M., Kayalı, E.S., Cimenoglu, H., 2005, “Wear Behaviour of 7039 Aluminum Alloy”, Materials Characterization, Vol:54, pp:263–269.
  • 9. Harrigan, W.C., 1998, “Commercial Processing of Metal Matrix Composites”, Materials Science and Engineering, Vol:244, pp:75-79.
  • 10. Furukawa, M., Nakano, O., Tasashima, Y., 1988, “Fracture Toughness of Al2O3-TiC Ceramics”, International Journal of Refractory & Hard Metals, Vol:7(1), pp:37-40.
  • 11. Bedir, F., Varol, R., 2006, “Production of Al-Cu/TiC Composites and Their Wear Characteristics” Proceedings of 11th International Materials Symposium, Denizli/Turkiye.
  • 12. Altınkök, N., Demir, A., Özsert, I., Fındık, F., Soy, U., 2006, “The Investigation of Mechanical Behaviour and Produced Al2O3/SiCp Reinforced Al Metal Matrix Composites” Proceedings of 11th International Materials Symposium, Denizli/Turkiye.
  • 13. Kennedy, A.R., Brampton, B., 2001, “The Reactive Wetting and Incorporation of B4C Particles into Molten Aluminium”, Scripta Material, Vol:44, pp:1077-1082.
  • 14. Lee, B.S., Kang, S., 2001, “Low-Temperature Processing of B4C-Al Composites Via Infiltration Technique”, Materials Chemistry and Physics, Vol:67, pp:249-255.
  • 15. Zhang, H., Ramesh, K.T.E., Chin, S.C., 2004, “High Strain Rate Response of Aluminium 6092/B4C Composites”, Materials Science and Engineering A, Vol:384, pp:26-34.
  • 16. Thevenot, F., 1990,“Boron Carbide-A Comprehensive Review”, Journal of the European Ceramic Society, Vol.:6, pp:205-225.
  • 17. Kumdalı, F., Toptan, F., Kerti, I., 2006, “Toz Metalurjisi Yöntemiyle Üretilen Al-B4c Kompozitlerinde Presleme ve Sinterleme Koşullarının Mikroyapı ve Özelliklere Etkisi” 13th International Metallurgy & Materials Congress, Ankara/Turkiye.
  • 18. Seo, Y.H., Kang, C.G., 1999, “Effects of Hot Extrusion Through a Curved die on the Mechanical Properties of SiCp/Al Composites Fabricated by Melt-Stirring”, Composites Science and Technology, Volume:59, Issue:5, Pages:643-654.
  • 19. Cambronero, L.E.G. Sánchez, E. Ruiz-Roman, J.M. Ruiz-Prieto, J.M. 2003, “Mechanical Characterisation of AA7015 Aluminium Alloy Reinforced with Ceramics”, Journal of Materials Processing Technology, Volumes:143-144, Pages:378-383.
  • 20. Geçginli, E., 1989, “Metalografi”, İTÜ Yayınları, İstanbul.