Log-oran dönüşümlü verilerde çok değişkenli analiz ve bu analizin madencilik bilimindeki önceliği: Porfiri ve polimetalik damar tipi yatak örnekleri

Her cevher sistemi, elementsel etkileşimler sebebiyle tipik belirli mineral birliktelikleri ilekarakterize olur. Bu nedenle uyumluluk ve kapanım etkileri probleminin, jeokimyasal süreçlerleüstesinden gelinmelidir. Uyumluluk, tam ya da altkompozisyon içerisinde, iki bileşen (sütunlarveya kolonlar) arasındaki oranın aynı kalmasına işaret eder. Log-Oran dönüşümü (LOD), altkompozisyonel uyumluluğunu desteklemek amacıyla oluşturulan bir standarttır. Log dönüşümlüveri, mineral birlikteliklerini açığa kavuşturmak amacıyla, benzerlik analizi (BA) ve temel bileşenanalizi (TBA) gibi çokdeğişkenli analizlerin uygulanmasından önce, jeokimyasal veri için uygulanır.Bu çalışmada, alt kompozisyonel uyumluluğu, iki farklı polimetalik ve porfi ri tipteki yataklardajeokimyasal bileşimsel verilerin terslenmiş izometrik log-oran dönüşümü ile sağlanmıştır. Glojeh’de,izometrik log-oran (ilo) dönüşüm verileri esas alınarak, Ag, Au, As, Pb, Te, Mo ve tercihen S, W,Cu polimetalik elementleri zenginleşirken, Dalli Yatağı’nda görülen Au-Cu-(Mo) zenginleşmesi,porfi ri tipi yatak oluşumuna işaret etmektedir. Veri matrisindeki sıfır değerlerinin işlenme ve Ökliduzaklıklarına göre her bir eksenin merkezinden belirlenen elementsel dışmerkezliliği belirlemeyeteneği, LOD’un sıkıştırılabilmesi ile BA metodunun avantajlarıdır. Oysaki her iki durum içinde,her yönde dağılmış yükleme faktörleri ve elde edilen altkompozisyonel uyumluluğu, LOD’un esasalan TBA metoduna rekabet avantajı sağlar. Bu yöntemle elde edilen sonuçlar, jeokimya verilerinianlama yeteneğini ve LOD kullanılarak elde edilen çokdeğişkenli tekniklerin gücünü artırmaktadır.

Multivariate analysis of log-ratio transformed data and its priority in mining science: Porphyry and polymetallic vein deposits case studies

Each mineralization style is characterized by typical signature associations between elements due to elemental interactions, therefore the coherence and closure effects problem must be overcome in geochemical processing. The coherence indicates the ratios between two components (rows or columns) remains the same whether they are considered in a subcomposition or in the full composition. The log-ratio transformation (LRT) has recognized as a standard procedure to support subcompositional coherence. The log-transformed data is applicable for geochemical data to unveil such associations, prior to applying the multivariate analysis like correspondence analysis (CA) and principal component analysis (PCA). At the present study, subcompositional coherence is overcome by inverse iso-metric log-ratio transformation for geochemical compositional data at two polymetallic and porphyry deposits. Based on Ilr-transformed data, Ag, Au, As, Pb, Te, Mo and rather S, W, Cu are enriched as polymetallic elements at Glojeh, while Au-Cu-(Mo) compositions indicate a porphyry deposit occurred in Dalli deposit. The ability to handle zero values in the data matrix and determining an elemental eccentricity from the center of each axis based on Euclidean distances are the advantages of CA method, with compression to LRT. Whereas, loading factors which spread in every direction and providing subcompositional coherence are the competitive advantages of PCA based on LRT, for both case studies. Results with these techniques show signifi cant ability to draw an inference in such geochemical data, and improving the performance of multivariate techniques using LRT.

___

  • Abdi, H., Valentin, D. 2007. Multiple correspondence analysis. Encyclopedia of measurement and statistics, 651-657.
  • Abdi, H., Williams, L. J., Valentin, D. 2013. Multiple factor analysis: Principal component analysis for multitable and multi-block data sets. Computational Statistics 5, 149-179.
  • Aitchison, J. 1982. The statistical analysis of compositional data. Journal of the Royal Statistical Society. Series B (Methodological), 139-177.
  • Aitchison, J. 1983. Principal component analysis of compositional data. Biometrika, 57-65.
  • Aitchison, J. 1986. The statistical analysis of compositional data. Monographs on Statistics and Applied Probability, 416 p.
  • Aitchison, J. 1990. Relative variation diagrams for describing patterns of compositional variability. Mathematical Geology 22, 487-511.
  • Aitchison, J., Greenacre, M. 2002. Biplots of compositional data. Journal of the Royal Statistical Society: Series C (Applied Statistics) 51, 375-392.
  • Akbarpour, A., Gholami, N., Azizi, H., Torab, F. M. 2013. Cluster and R-mode factor analyses on soil geochemical data of Masjed-Daghi exploration area, northwestern Iran. Arabian Journal of Geosciences 6, 3397-3408.
  • Bitner-Mathé, B. C., Klaczko, L. B. 1999. Heritability, phenotypic and genetic correlations of size and shape of Drosophila mediopunctata wings. Heredity 83, 688-696.
  • Carranza, E. J. M. 2009. Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews 35, 383-400.
  • Carranza, E. J. M. 2011. Analysis and mapping of geochemical anomalies using logratiotransformed stream sediment data with censored values. Journal of Geochemical Exploration 110, 167-185.
  • Carranza, E. J. M. 2017. Geochemical Mineral Exploration: Should We Use Enrichment Factors or LogRatios? Natural Resources Research 26, 411-428.
  • Collins, M., Ovalles, F. 1988. Variability of northwest Florida soils by principal component analysis. Soil Science Society of America Journal 52, 1430-1435.
  • Croux, C., Haesbroeck, G. 2000. Principal component analysis based on robust estimators of the covariance or correlation matrix: infl uence functions and effi ciencies. Biometrika 87, 603- 618.
  • Darabi-Golestan, F., Ghavami-Riabi, R., AsadiHarooni, H. 2013a. Alteration, zoning model, and mineralogical structure considering lithogeochemical investigation in Northern Dalli Cu–Au porphyry. Arabian Journal of Geosciences 6, 4821-4831.
  • Darabi-Golestan, F., Ghavami-Riabi, R., Khalokakaie, R., Asadi-Haroni, H., Seyedrahimi-Nyaragh, M. 2013b. Interpretation of lithogeochemical and geophysical data to identify the buried mineralized area in Cu-Au porphyry of Dalli-Northern Hill. Arabian Journal of Geosciences 6, 4499-4509.
  • Darabi-Golestan, F., Hezarkhani, A. 2016. High precision analysis modeling by backward elimination with attitude on interaction effects on Au (Ag)- polymetallic mineralization of Glojeh, Iran. Journal of African Earth Sciences 124, 505-516.
  • Darabi-Golestan, F., Hezarkhani, A. 2017. R- and Q-mode multivariate analysis to sense spatial mineralization rather than uni-elemental fractal modeling in polymetallic vein deposits. Geosystem Engineering, 1-10.
  • Darabi-Golestan, F., Hezarkhani, A. 2018. Evaluation of elemental mineralization rank using fractal and multivariate techniques and improving the performance by log-ratio transformation. Journal of Geochemical Exploration 189, 11-24.
  • Darabi-Golestan, F., Hezarkhani, A., Zare, M. 2017. Assessment of 226 Ra, 238 U, 232 Th, 137 Cs and 40 K activities from the northern coastline of Oman Sea (water and sediments). Marine Pollution Bulletin 118, 197-205.
  • David, M., Campiglio, C., Darling, R. 1974. Progresses in R-and Q-mode analysis: correspondence analysis and its application to the study of geological processes. Canadian Journal of Earth Sciences 11, 131-146.
  • Diday, E., Noirhomme-Fraiture, M. 2008. Symbolic data analysis and the SODAS software, Wiley Online Library, Namur, Belgium.
  • Egozcue, J. J., Pawlowsky-Glahn, V., Mateu-Figueras, G., Barcelo-Vidal, C. 2003. Isometric logratio transformations for compositional data analysis. Mathematical Geology 35, 279-300.
  • Fávaro, D., Damatto, S., Moreira, E., Mazzilli, B., Campagnoli, F. 2007. Chemical characterization and recent sedimentation rates in sediment cores from Rio Grande reservoir, SP, Brazil. Journal of Radioanalytical and Nuclear Chemistry 273, 451- 463.
  • Filzmoser, P., Hron, K. 2008. Outlier detection for compositional data using robust methods. Mathematical Geosciences 40, 233-248.
  • Filzmoser, P., Hron, K., Reimann, C. 2009a. Principal component analysis for compositional data with outliers. Environmetrics 20, 621-632.
  • Filzmoser, P., Hron, K., Reimann, C. 2009b. Univariate statistical analysis of environmental (compositional) data: problems and possibilities. Science of the Total Environment 407, 6100- 6108.
  • Filzmoser, P., Hron, K., Reimann, C., Garrett, R. 2009c. Robust factor analysis for compositional data. Computers ve Geosciences 35, 1854-1861.
  • Filzmoser, P., Hron, K., Reimann, C. 2010. The bivariate statistical analysis of environmental (compositional) data. Science of the Total Environment 408, 4230-4238.
  • García-Izquierdo, M., Ríos-Rísquez, M. I. 2012. The relationship between psychosocial job stress and burnout in emergency departments: an exploratory study. Nursing outlook 60, 322-329.
  • Golestan, F. D., Hezarkhani, A., Zare, M. 2013. Interpretation of the Sources of Radioactive Elements and Relationship between them by Using Multivariate Analyses in Anzali Wetland Area. Geoinformatics & Geostatistics: An Overview 1, 1-10.
  • Greenacre, M. 2007. Correspondence analysis in practice, CRC press.
  • Greenacre, M. 2010. Log-ratio analysis is a limiting case of correspondence analysis. Mathematical Geosciences 42, 129-134.
  • Greenacre, M. 2011. Measuring subcompositional incoherence. Mathematical Geosciences 43, 681- 693.
  • Greenacre, M., Blasius, J. 2006. Multiple correspondence analysis and related methods, CRC press.
  • Greenacre, M. J. 1984. Theory and applications of correspondence analysis.
  • Gu, X., Liu, C., Wang, S., Zhao, C. 2015. Feature extraction using adaptive slow feature discriminant analysis. Neurocomputing 154, 139-148.
  • Hayton, J. C., Allen, D. G., Scarpello, V. 2004. Factor retention decisions in exploratory factor analysis: A tutorial on parallel analysis. Organizational research methods 7, 191-205.
  • Jeong, D. H., Ziemkiewicz, C., Fisher, B., Ribarsky, W., Chang, R. 2009. iPCA: An Interactive System for PCA-based Visual Analytics. In “Computer Graphics Forum”, Vol. 28, pp. 767-774. Wiley Online Library.
  • Ji, H., Zeng, D., Shi, Y., Wu, Y., Wu, X. 2007. Semihierarchical correspondence cluster analysis and regional geochemical pattern recognition. Journal of Geochemical Exploration 93, 109-119.
  • Ji, H., Zhu, Y., Wu, X. 1995. Correspondence cluster analysis and its application in exploration geochemistry. Journal of geochemical Exploration 55, 137-144.
  • Karamanis, D., Ioannides, K., Stamoulis, K. 2009. Environmental assessment of natural radionuclides and heavy metals in waters discharged from a lignite-fi red power plant. Fuel 88, 2046-2052.
  • Kazmierczak, J. 1985. Analyse logarithmique: deux exemples d’application. Revue de statistique appliquée 33, 13-24.
  • Liu, Y., Cheng, Q., Zhou, K., Xia, Q., Wang, X. 2016. Multivariate analysis for geochemical process identifi cation using stream sediment geochemical data: A perspective from compositional data. Geochemical Journal 50, 293-314.
  • Março, P. H., Scarminio, I. S. 2007. Q-mode curve resolution of UV–vis spectra for structural transformation studies of anthocyanins in acidic solutions. Analytica chimica acta 583, 138-146.
  • Maronna, R., Martin, R. D., Yohai, V. 2006. Robust statistics: Theory and Methods, John Wiley & Sons, Chichester. ISBN.
  • Martín-Fernández, J. A., Barceló-Vidal, C., PawlowskyGlahn, V. 2003. Dealing with zeros and missing values in compositional data sets using nonparametric imputation. Mathematical Geology 35, 253-278.
  • Olofsson, T., Andersson, S., Sjögren, J.-U. 2009. Building energy parameter investigations based on multivariate analysis. Energy and Buildings 41, 71-80.
  • Pawlowsky-Glahn, V., Buccianti, A. 2011. Compositional data analysis: Theory and applications, John Wiley & Sons.
  • Pawlowsky-Glahn, V., Egozcue, J. J. 2006. Compositional data and their analysis: an introduction. Geological Society, London, Special Publications 264, 1-10.
  • Pawlowsky-Glahn, V., Egozcue, J. J., Tolosana Delgado, R. 2007. Lecture notes on compositional data analysis.
  • Ramasamy, V., Sundarrajan, M., Paramasivam, K., Meenakshisundaram, V., Suresh, G. 2013. Assessment of spatial distribution and radiological hazardous nature of radionuclides in high background radiation area, Kerala, India. Applied Radiation and Isotopes 73, 21-31.
  • Reimann, C., Filzmoser, P., Garrett, R., Dutter, R. 2011. Statistical data analysis explained: applied environmental statistics with R, John Wiley & Sons.
  • Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., Dinelli, E., Ladenberger, A., Team, T. G. P. 2012. The concept of compositional data analysis in practice—total major element concentrations in agricultural and grazing land soils of Europe. Science of the total environment 426, 196-210.
  • Silverman, J. D., Washburne, A., Mukherjee, S., David, L. A. 2016. A phylogenetic transform enhances analysis of compositional microbiota data. bioRxiv, 072413.
  • Stanley, C. R. 2006. On the special application of Thompson– Howarth error analysis to geochemical variables exhibiting a nugget effect. Geochemistry: Exploration, Environment, Analysis 6, 357-368.
  • Templ, M., Filzmoser, P., Reimann, C. 2008. Cluster analysis applied to regional geochemical data: problems and possibilities. Applied Geochemistry 23, 2198-2213.
  • Thió-Henestrosa, S., Martín-Fernández, J. 2005. Dealing with compositional data: the freeware CoDaPack. Mathematical Geology 37, 773-793.
  • Thompson, M., Howarth, R. J. 1976. Duplicate analysis in geochemical practice. Part I. Theoretical approach and estimation of analytical reproducibility. Analyst 101, 690-698.
  • Tokatli, C., Köse, E., Çiçek, A. 2014. Assessment of the effects of large borate deposits on surface water quality by multi statistical approaches: A case study of Seydisuyu Stream (Turkey). Polish Journal of Environmental Studies 23, 1741-1751.
  • Zhu, Y., An, F., Tan, J. 2011. Geochemistry of hydrothermal gold deposits: a review. Geoscience Frontiers 2, 367-374.
  • Zuo, R., Xia, Q., Wang, H. 2013. Compositional data analysis in the study of integrated geochemical anomalies associated with mineralization. Applied geochemistry 28, 202-211.
Maden Tetkik ve Arama Dergisi-Cover
  • ISSN: 0026-4563
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1950
  • Yayıncı: Cahit DÖNMEZ
Sayıdaki Diğer Makaleler

Paleosismoloji kataloğu: 2012 yılı öncesi Türkiye’deki aktif faylar üzerinde yapılmış hendek çalışmaları

Şule GÜRBOĞA, Oktay GÖKÇE

Karakchatau Dağları’ndaki (Batı Özbekistan) altın cevherleşmesi içerisindeki farklı köken ve bileşimli mineral parajenezlerine ait kuvars minerallerinin tipomorfi k özellikleri

Svetlana KOLOSKOVA, Jakhongir MOVLANOV

Yarpuz-Kaypak (Amanoslar, Osmaniye) yöresindeki ofi yolitik kayaçların jeokimyası ve tektonik önemi

Tamer RIZAOĞLU, Utku BAĞCI, Osman PARLAK

Laboratuvar çalışmaları sonuçları ve benzetim (simülasyon) yöntemi kullanılarak altın cevheri öğütme devreleri ile ilgili seçeneklerin değerlendirilmesi; örnek olay incelemesi: İran Gold Co.

Hojjat HOSSEINZADEH GHAREHGHESHLAGH, Ayşe Tuğba CEBECİ, Şevket Levent ERGÜN

Kayan standart sapma (türevsiz) ve yatay gradyent (türevli) filtrelerinin etkileri hakkında not

Ceyhan Ertan TOKER

Alveolina (Glomalveolina) Hottinger, 1960 ve Alveolina (Alveolina) d’Orbigny, 1826 altcinslerinin (Foraminiferida) tanımı, sistematiği ve revizyonu

Şükrü ACAR

Mut Havzası’nda deniz düzeyi değişimlerinin sedimantasyon üzerindeki kontrolü: Geç Serravaliyen-Erken Tortoniyen kazınma vadisi dolgusu

Ayhan ILGAR, Gönül ÇULHA, Tolga ESİRTGEN, Aynur HAKYEMEZ, Serap DEMİRKAYA, Banu TÜRKMEN BOZKURT

Güneydoğu Anadolu havzasında petrol ve iyot ilişkisi

Adil ÖZDEMİR

18 Mart 1953 Yenice-Gönen Depremi (Ms=7.2) ışığında Yenice-Gönen Fayı’nın aktif tektonik ve paleosismolojik özellikleri, KB Türkiye

Selim ÖZALP, Ersin ÖZDEMİR, Akın KÜRÇER, Tamer Y. DUMAN, Çağıl UYGUN GÜLDOĞAN

Güneybatı Nijerya Odo Oba’da çiftçilerin radyasyona maruz kalma risklerinin istatistiksel olarak değerlendirilmesi

Theophilus Aanuoluwa ADAGUNODO, Lukman Ayobami SUNMONU, Moruffdeen Adedapo ADABANIJA, Maxwell OMEJE, Oluwole Akinwumi ODETUNMİBİ, Victor IJEH