Laboratuvar çalışmaları sonuçları ve benzetim (simülasyon) yöntemi kullanılarak altın cevheri öğütme devreleri ile ilgili seçeneklerin değerlendirilmesi; örnek olay incelemesi: İran Gold Co.

Bu çalışmada İran’daki bir altın madeninde benzetim (simülasyon) destekli düzenlenmiş bir öğütmedevresi konu edilmektedir. Öğütme devresinin tasarımı için gerekli parametreler cevherin özelliklerive uygulanması düşünülen işlem koşullarıdır. Cevher özelliklerini Ağırlık düşürme (Drop-weigh)testi (A.b), aşınma testi $(t_a)$ ve Bond İş İndeksi ($W_i$) belirlemektedir. Bu çalışmada, cevher hazırlamatesisi için gereken işletme koşulları killi minerallerin işlenebilmesi ve tesis kapasitesi ile hidrosiklonüst akımının (Lıç tankı beslemesı) $d_{80}$ ’nidir. Bu tesis için düşünlen kapasite ve $d_{80}$ sırasıyla 125 t/sa ve 45 mikrondur. Simülasyon işlemleri öğütme parametreleri (A, b, $(t_a)$, $W_i$ ), işletme sınırlamaları(tesis kapasitesi, hidrosiklon üst akımının $d_{80}$ ’ni ve kil minerallerini işleme becerisi), farklı tiptekikırıcılar, değirmenler ve separatörlere ait matematiksel modeller ile JKSim yazılımı kullanılarakyapılmıştır. Benzetim işleminin tamamlanmasıyla üzerinde çalışılan cevheri öğütmek için üç farklıseçenek öngörülmüştür. Özgül enerji tüketimi (kWh/t), işletme değişikliklerine duyarlılık ve kilminerallerini işleyebilme becerileri dikkate alınarak, bu üç alternatif öğütme devreleri karşılaştırılmışve değerlendirilmiştir. En uygun devre kil minerallerini işleyebilmeli, en az enerji tüketmeli ve işletmedeğişikliklerine çok duyarlı olmamalıdır. Bu faktörler dikkate alınarak 3 üncü alternatif uygun öğütmedevresi olarak belirlenmiş ve önerilmiştir.

Evaluation of the alternatives for gold ore grinding circuits by using of laboratory studies results and simulation method; case study: İranian Gold Co.

In this study, simulation aided design of grinding circuit for a gold mine in Iran is presented. The main parameters for the design of the grinding circuit are the ore specifi cations and the considered operating conditions. Ore specifi cations were characterized by grinding tests, which included the Drop - weigh test (A, b), the abrasion test $(t_a)$ and the Bond Work Index test ($W_i$). For this study, the operating conditions for the processing plant are the ability to process clayey minerals and the plant throughput and the $d_{80}$ of the hydrocyclone overfl ow (leaching tank feed), which are 125 tons per hour and 45 μm, respectively. Simulation operations were performed using grinding parameters (A, b, $(t_a)$ , $W_i$ ), operating constraints (plant capacity, $d_{80}$ of the hydrocyclone overfl ow and ability to work for clayey minerals), existing mathematical models for different types of crushers, mills and separators and JKSimMet software. By completing the simulation process, three different alternatives for the grinding circuit of the considered ore were predicted. These three alternatives have been compared and evaluated with each other in terms of specifi c energy consumption (kWh/t), sensitivity to operational variables and the ability to process clayey minerals. The optimal circuit must have the capability to process clayey minerals and must have the lowest specifi c energy consumption and the least sensitivity to operational variables. By considering all these factors, the Alternative 3 is selected and suggested for an effi cient grinding circuit.

___

  • Andersen, J S. 1989. Development of a Cone Crusher Model. M.Eng.Sc Thesis, University of Queensland.
  • Arbiter, N., Harris, C.C., Stamboltzis, G.A. 1969. Single fracture of brittle spheres. Trans. Soc. Min. Eng., AIME 244, 118–130.
  • Austin, L. G., Klimpel, R. R., Luckie, P. T. 1984. Process Engineering of Size Reduction: Ball Milling. Society of Mining Engineers of the American Institute of Mining, Metallurgical and Petroleum Engineers (AIME) Inc, ISBN 0895204215, New York, 556 pp.
  • Awachie, S.F.A. 1983. Development of crusher models usin g laboratory breakage data, PhD Thesis, University of Queensland.
  • Banks, J., Carson, J., Nelson, B., Nicol, D. 2001. DiscreteEvent System Simulation. Prentice Hall. p. 3. ISBN 0-13-088702-1.
  • Bond, F.C. 1952. The third theory of comminution. Trans AIME 193, 484–494.
  • Bond, F.C. 1961. Crushing and grinding calculations, British Chemical Engineering, 6, 6, pp: 378 - 385.
  • Broadbent, S.R., Callcott, T.G. 1956. A matrix analysis of processes involving particulate assemblies. Phil. Trans Royal Soc. London, Ser. A 249, 99–123.
  • Daniel, M.J. 2002. HPGR model verifi cation and scale-up. M.Sc Thesis, School of Engineering, University of Queensland, Brisbana, Australia.
  • Daniel M.J., Morrell S. 2004. HPGR Model Verifi cation and Scale-up. Minerals Engineering, 17, 1149-1161.
  • Deister, R.J. 1987. How to determine the Bond work index using lab. ball mill grindability tests. Engng. Min. J., 188, 42.
  • Delboni, H., Marco A., Rosa, N., Maurício, G., Bergerman, Rinaldo P. Nardi. 2006. Optimisation of the Sossego Sag Mill. SAG 2006: SAG Mill Circuit. Int. Conf. on Autogenous and Semi autogenous Grinding Technology, 1: 39-50.
  • Dunne, R., Morrell, S., Lane, G., Valery, W., Hart, S. 2001. Design of the 40 foot diameter sag mill installed at the Cadia gold copper mine. SAG 2001, mining and mineral process engineering University of British Columbia, Vancouver, Canada.
  • Epstein, B. 1947. The Material Description of Certain Breakage Mechanisms Leading to the Logorithmic-Normal Distribution, J. Franklin Inst., 244, 471-477.
  • Epstein, B. 1948. Logarithmico-normal distributions in the breakage of solids. Ind. Eng. Chem., 40, 2289– 2291.
  • Ergün, L., Güulsoy, O., Can, M., Benzer, H. 2005 (June 09-12). Optimization of Çayeli (Çbi) Grinding Circuit by Modelling and Simulation. The 19th International Mining Congress and Fair of Turkey (IMCET2005), İzmir, Turkey.
  • Gardner, R.P., Austin, L.G. 1962. A Chemical Engineering Treatment of Batch Grinding. Proceedings, First European Symp. Zerkeinern. Edited by H. Rumpf and D. Behrens, Verlag Chemie, Weinheim, 217- 247.
  • Genç, O., Benzer, H. 2008. Analysis of single particle breakage characteristics of cement clinker and cement additives by drop-weight technique. The Journal of the Chamber of Mining Engineers of Turkey (47) (in Turkish), 13–26.
  • Genç, O., Ergün, L., Benzer, H. 2004. Single particle breakage characterization of materials by drop weight testing. XLI Annual Symposium Physicochemical Problems of Mineral Processing and IX International Mineral Processing Meeting, Poland 38, 241–255.
  • Gharehgheshlagh, H. H. 2016. Kinetic grinding test approach to estimate the ball mill work index. Physicochemical Problems of Mineral Processing, 52(1), 342-352. https://doi. org/10.5277/ppmp160129.
  • Gray, J., Rumpe, B. 2016. Models in simulation. Softw Syst Model, 15, 605–607.
  • Gross, J. 1938. Crushing and grinding. US Bureu of Mines Bulletin 402, 1–148.
  • Hart, S., Valery, W., Clements, B., Reed, M., Song, M., Dunne, R. 2001. Optimisation of the Cadia Hill Sag mill circuit. SAG 2001. Mining and mineral process engineering university of British Columbia, Vancouver, Canada.
  • Herbst, J. A., Fuerstenau, D. W. 1980. Scale-Up Procedure for Continuous Grinding Mill Design Using Population Balance Models. International Journal of Mineral Processing, 7, 1-31.
  • Hosseinzadeh Gharehgheshlagh, H. 2014. An Investigation on Scale - Up of Ball Mills (in Turkish). PHD thesis, Hacettepe University, Mining Engineering Department, 292 pp. Ankara (yayımlanmamış), Turkey.
  • Hosseinzadeh Gharehgheshlagh H., Ergun, L., Chehreghani, S. 2017. Investigation of the laboratory conditions effects on the prediction accuracy of size distribution of industrial ball mill discharge by using of perfect mixing model; case study: Ozdogu copper-molybdenum plant, Physicochemical Problems of Mineral Processing, 53(2), 1175−1187.
  • JK Bond Ball Mill Index Test, https://jktech.com.au/ sites/default/files/brochures/LabServices_ BondBallMill.pdf.
  • JK Drop Weight Test, https://jktech.com.au/sites/default/ files/brochures/LabServices_DWTest_Indetail. pdf
  • Kelly, E.G. 1991. The Evaluation of Separation Effi ciency. In Evaluation and Optimisation of Metallurgical Performance. ed. Malhotra, Klimpel, Mular, SME Inc, Littleton, 239-252.
  • Kelly, E.G., Spottiswood, D.J. 1982. Introduction to mineralprocessing. J. Wiley, Chapters 3 and 25.
  • Kelsall, D.F., Reid KJ. 1969. Symposium on size reduction, Chemical Engineering Association, Sydney University.
  • King, R.P., Schneider, C.L., King, E.A. 2012. Modeling and Simulation of Mineral Processing Systems. SME, ISBN-13: 978-0-87335-345-8, Colorado, USA.
  • Koch, P.H. 2017. Particle Generation for Geometallurgical Process Modeling. Licentiate thesis, Luleå University of Technology, Division of Minerals and Metallurgical Engineering (MiMeR), Department of Civil, Environmental and Natural Resources Engineering, 126 pp. Luleå, Sweden.
  • Leung, K. 1987. An Energy-based Ore Specifi c Model for Autogeneous and Semi-autogeneous Grinding. PhD Thesis, JKMRC, University of Queensland.
  • Leung, K., Morrison, R.D., Whiten, W.J. 1987. An energy based ore specifi c model for autogenous and semi-autogenous grinding. Copper 87. Chilean Institute of Mining Engineers, Santiago, Chile.
  • Levin, J. 1989. Observations on the Bond standard grindability test, and a proposal for a standard grindability test for fi ne materials. J.S. Afr. lnst. Min. Metall, 89, 13.
  • Liang, G., Wei, D., Xu, X., Xia, X., Li, Y. 2016. Study on the Selection of Comminution Circuits for a Magnetite Ore in Eastern Hebei, China. Minerals, 6(2), 39; https://doi.org/10.3390/min6020039.
  • Lynch, A. J. 1977. Mineral crushing and grinding circuits: their simulation, optimisation, design, and control. New York: Elsevier Scientifi c.
  • Lynch, A. J., Rao, T. C. 1975. Modelling and scale-up of hydrocyclones classifi ers. In XI International Mineral Processing Congress, Cagliari, 245-269.
  • Man, Y.T. 2001. Model-Based Procedure For Scale-up of Wet, Overfl ow Ball Mills Part-2: Validation and Discussion. Minerals Engineering, Volume 14, No.10, 1259-1265.
  • Maruf Hasan, Md. 2016. Process Modelling of Gravity Induced Stirred Mills. PHD thesis, University of Queensland, JKMRC, 211 pp. Brisbana, Australia.
  • Morrell, S. 1992 (January-April). Prediction of GrindingMill Power. Transaction of Institute of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy. 101, 25-32.
  • Morrell, S. 1993. The prediction of power draw in wet tumbling mills. PhD Thesis, JKMRC, University of Queensland, Brisbane.
  • Morrell, S. 1996 (January-April). Power Draw of Wet Tumbling Mills and Its Relationship to Charge Dynamics, Part 1: A Continuum Approach to Mathematical Modelling of Mill Power Draw. Transaction of Institute of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, 105, 43-53.
  • Morrell, S. 1996 (January-April). Power Draw of Wet Tumbling Mills and Its Relationship to Charge Dynamics, Part 2: An Empirical Approach to Modelling of Mill Power Draw. Transaction of Institute of Mining and Metallurgy, Section C: Mineral Processing and Extractive Metallurgy, 105, 54-62.
  • Morrell, S., Morrison, R. 1989. Ore charge, ball load and material fl ow effects on an energy based SAG mill model. SAG Milling Conference, Murdoch University WA.
  • Morrell, S., Finch, W.M., Kojovic, T., Delboni Jr., H. 1996. Modelling and simulation of large diameter autogeneous and semi-autogeneous mills. Int. J. Miner. Process, 44-45, 289-300.
  • Morrell, S., Lim, W., Shi, F., Tondo, L. 1997. Modelling of the HPGR Crusher. Comminution Practices, ed. Kawatra, K.S., Society for Mining, Metallurgy, and Exploration, Inc. (SME), Chapter 17, pp. 117-126.
  • Morrell, S., Napier-Munn, T.J., Andersen, J. 1992. The prediction of power draw in comminution machines. Comminution-Theory and Practice, K. Kawatra (ed), SME, Chapter 17, pp. 2 35-247.
  • Mular, A., Halbe, D., Barratt, D. 2002. Mineral Processing Plant Design, Practice, and Control. SME, ISBN 087335-223-8, Colorado, USA.
  • Munoz, A., Alvarez, L., Colacioppo, J., Valery, W. 2008. Process Integration and Optimisation at Freeport - Mcmoran Candelaria Mine, Copiapó, Chile, Proceedings of the V International Mineral Processing Seminar, PROCEMIN 2008, Santiago, Chile, 303-315.
  • Nageswararao, K. 1978. Further developments in the modeling and scale-up of industrial hydrocyclones. PHD thesis, JKMRC, University of Queensland, Brisbane, Australia.
  • Napier-Munn, T.J., Morrell, S., Morrison, R.D., Kolovic, T. 1996. Mineral Comminution Circuits: Their Operation and Optimisation. JKMRC, University of Queensland, Brisbane.
  • Narayanan, S.S. 1985. Development of a Laboratory Single Particle Breakage Technique and its Application to Ball Mill Modelling and Scale-up. Ph.D. Thesis, University of Queensland.
  • Narayanan, S.S., Whiten W.J. 1983 (June). Breakage Characteristics for Ores for Ball Mill Modelling. Australias Inst Min Metall, 286, 31-39.
  • Nikkhah, K., Anderson, C. 2001 (Feb. 26-28). Role of simulation software in design and operation of metallurgical plants: a case study. SME Annual Meeting, Denver, Colorado.
  • Özer, C., Whiten, W.J. 2012. A multi-component appearance function for the breakage of coal. International Journal of Mineral Processing, 104-105, 37–44.
  • Palaniandy, S. 2017. Extending the application of JKFBC for gravity induced stirred mills feed ore characterization. Minerals Engineering 101, 1–9.
  • Pellegrini Rosario, P. 2010. Comminution Circuit Design and Simulation for the Development of a Novel High Pressure Grinding Roll Circuit. PHD thesis, University of British Columbia, Faculty of Mining Engineering, 175 pp. Vancouver, Canada.
  • Piret, E.L. 1953. Fundamental aspects of grinding. Chemical Engineering Progress, 49, 56–63.
  • Robinson, S. 1997. Simulation Model Verifi cation and Validation: Increasing The Users’ Confi dence. Proceedings of the 1997 Winter Simulation Conference, Atlanta, USA.
  • Rosin, P., Rammler, E. 1933. The laws governing the fi neness of powdered coal. J. Inst. Fuel, 7, 29–36.
  • Schwarz, S., Richardson, J. M. 2013 (Feb. 24 - 27). Modeling and Simulation of Mineral Processing Circuits Using Jksimmet and Jksimfl oat. SME annual meeting, Denver Co.
  • Shi, F., Kojovic, T., Brennan, M. 2015. Modelling of vertical spindle mills. Part 1: Sub-models for comminution and classifi cation. Fuel 143, 595–601.
  • Sokolowski, J.A., Banks, C.M. 2009. Principles of Modeling and Simulation. Hoboken, NJ: Wiley. p. 6. ISBN 978-0-470-28943-3.
  • Sutherland, K.L. 1948. Physical chemistry of froth fl otation XI Kinetics of the fl otation process. J. Phys. Colloid. Chem. 52, 394–425.
  • Tavares, L.M. 1999. Energy absorbed in breakage of single particles in drop-weight testing. Minerals Engineering, 12 (1), 43–50.
  • Tavares, L., Delboni, H. 2016. Modelling and Simulation of the Santa Rita Mine Milling Circuit, REM (Revista Escola de Minas), Ouro Preto, 69(2), 207-211.
  • Tondo L. 1996. Modelling of HPGR crushers. M. Eng Science Thesis, University of Queensland.
  • Wendelin Wikedzi, A. 2018. Optimization and Performance of Grinding Circuits: The Case of Buzwagi Gold Mine (BGM). PHD thesis, Technische Universität Bergakademie, Faculty of Mechanical, Process and Energy Engineering. 208 pp. Freiberg, Germany.
  • Wenzheng, L. 1991. Comminution for large concentrator. Transactions of NFsoc, vol. 1, no.1.
  • Whiten, W.J. 1971. Proceeding, Symposium on Automatic Control Systems Mineral Processing Plants, AusIMM, Southern Queensland branch, 129-148.
  • Whiten, W. J. 1972. The simulation of crushing plants with models developed using multiple spline regression. In 10th International Symposium on the Application of Computer Methods in the Mineral Industry, Johannesburg, 317-323.
  • Whiten, W.J. 1974. A matrix theory of comminution machines. Chem. Eng. Sci. No. 29, 585-599.
  • Whiten, W.J., 1976. Ball mill simulation using small calculators, Proc. Australias. Inst. Min. Me tall., 258, 47 - 53.
  • Whiten, W.J. 1984. Models and control techniques for crushing plants, Control 84, Minl./ Metall. Process (Am.Inst.Min.Engrs. Annual Meet., Los Angeles, USA, February), 217-225.Queensland branch, 129-148.
  • Wills, B.A., Napier-Munn, T. 2011. Will’s mineral processing technology: An introduction to the practical aspects of ore treatment and mineral recovery. Seventh edition, Elsevier Ltd.
  • Yoshioka, N., Hotta, Y. 1955. Liquid cyclone as a hydraulic classifi er. Chem. Eng. Japan 19, 632–640.
  • Zuo, W. 2015. A study of the applications and modelling of high voltage pulse comminution for mineral ores. PHD thesis, University of Queensland, JKMRC. 206pp. Brisbana, Australia.
Maden Tetkik ve Arama Dergisi-Cover
  • ISSN: 0026-4563
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 1950
  • Yayıncı: Cahit DÖNMEZ
Sayıdaki Diğer Makaleler

18 Mart 1953 Yenice-Gönen Depremi (Ms=7.2) ışığında Yenice-Gönen Fayı’nın aktif tektonik ve paleosismolojik özellikleri, KB Türkiye

Selim ÖZALP, Ersin ÖZDEMİR, Akın KÜRÇER, Tamer Y. DUMAN, Çağıl UYGUN GÜLDOĞAN

Türkiye’nin nadir yer element (NYE) kaynakları: Özelliklerine ve kökenlerine genel bir bakış

Cem KASAPÇI, Nurullah HANİLÇİ, Hüseyin ÖZTÜRK, Sinan ALTUNCU

Güneybatı Nijerya Odo Oba’da çiftçilerin radyasyona maruz kalma risklerinin istatistiksel olarak değerlendirilmesi

Theophilus Aanuoluwa ADAGUNODO, Lukman Ayobami SUNMONU, Moruffdeen Adedapo ADABANIJA, Maxwell OMEJE, Oluwole Akinwumi ODETUNMİBİ, Victor IJEH

Log-oran dönüşümlü verilerde çok değişkenli analiz ve bu analizin madencilik bilimindeki önceliği: Porfiri ve polimetalik damar tipi yatak örnekleri

Ardeshir HEZARKHANI, Farshad DARABİ-GOLESTAN

Güneydoğu Anadolu havzasında petrol ve iyot ilişkisi

Adil ÖZDEMİR

Alveolina (Glomalveolina) Hottinger, 1960 ve Alveolina (Alveolina) d’Orbigny, 1826 altcinslerinin (Foraminiferida) tanımı, sistematiği ve revizyonu

Şükrü ACAR

Karakchatau Dağları’ndaki (Batı Özbekistan) altın cevherleşmesi içerisindeki farklı köken ve bileşimli mineral parajenezlerine ait kuvars minerallerinin tipomorfi k özellikleri

Svetlana KOLOSKOVA, Jakhongir MOVLANOV

Yarpuz-Kaypak (Amanoslar, Osmaniye) yöresindeki ofi yolitik kayaçların jeokimyası ve tektonik önemi

Tamer RIZAOĞLU, Utku BAĞCI, Osman PARLAK

Laboratuvar çalışmaları sonuçları ve benzetim (simülasyon) yöntemi kullanılarak altın cevheri öğütme devreleri ile ilgili seçeneklerin değerlendirilmesi; örnek olay incelemesi: İran Gold Co.

Hojjat HOSSEINZADEH GHAREHGHESHLAGH, Ayşe Tuğba CEBECİ, Şevket Levent ERGÜN

Mut Havzası’nda deniz düzeyi değişimlerinin sedimantasyon üzerindeki kontrolü: Geç Serravaliyen-Erken Tortoniyen kazınma vadisi dolgusu

Ayhan ILGAR, Gönül ÇULHA, Tolga ESİRTGEN, Aynur HAKYEMEZ, Serap DEMİRKAYA, Banu TÜRKMEN BOZKURT